matthieulel commited on
Commit
1ccba86
1 Parent(s): 76d12f0

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/beit-large-patch16-224-pt22k
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: beit-large-patch16-224-pt22k-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # beit-large-patch16-224-pt22k-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [microsoft/beit-large-patch16-224-pt22k](https://huggingface.co/microsoft/beit-large-patch16-224-pt22k) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.5048
24
+ - Accuracy: 0.8788
25
+ - Precision: 0.8779
26
+ - Recall: 0.8788
27
+ - F1: 0.8775
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.5123 | 0.99 | 62 | 1.2940 | 0.5276 | 0.5208 | 0.5276 | 0.5021 |
62
+ | 0.9691 | 2.0 | 125 | 0.7947 | 0.7272 | 0.7161 | 0.7272 | 0.7095 |
63
+ | 0.7326 | 2.99 | 187 | 0.5790 | 0.8010 | 0.7979 | 0.8010 | 0.7970 |
64
+ | 0.6346 | 4.0 | 250 | 0.6230 | 0.7931 | 0.7984 | 0.7931 | 0.7883 |
65
+ | 0.5945 | 4.99 | 312 | 0.5042 | 0.8360 | 0.8390 | 0.8360 | 0.8349 |
66
+ | 0.5607 | 6.0 | 375 | 0.4401 | 0.8455 | 0.8464 | 0.8455 | 0.8421 |
67
+ | 0.5137 | 6.99 | 437 | 0.4689 | 0.8506 | 0.8533 | 0.8506 | 0.8449 |
68
+ | 0.4842 | 8.0 | 500 | 0.4586 | 0.8484 | 0.8560 | 0.8484 | 0.8498 |
69
+ | 0.4816 | 8.99 | 562 | 0.4310 | 0.8534 | 0.8548 | 0.8534 | 0.8518 |
70
+ | 0.4538 | 10.0 | 625 | 0.4380 | 0.8529 | 0.8528 | 0.8529 | 0.8493 |
71
+ | 0.4334 | 10.99 | 687 | 0.4288 | 0.8625 | 0.8628 | 0.8625 | 0.8617 |
72
+ | 0.4086 | 12.0 | 750 | 0.4904 | 0.8608 | 0.8627 | 0.8608 | 0.8592 |
73
+ | 0.4143 | 12.99 | 812 | 0.4148 | 0.8675 | 0.8697 | 0.8675 | 0.8663 |
74
+ | 0.4164 | 14.0 | 875 | 0.4477 | 0.8647 | 0.8676 | 0.8647 | 0.8649 |
75
+ | 0.3464 | 14.99 | 937 | 0.4843 | 0.8512 | 0.8534 | 0.8512 | 0.8500 |
76
+ | 0.3654 | 16.0 | 1000 | 0.4632 | 0.8625 | 0.8631 | 0.8625 | 0.8619 |
77
+ | 0.2933 | 16.99 | 1062 | 0.4811 | 0.8596 | 0.8605 | 0.8596 | 0.8574 |
78
+ | 0.3299 | 18.0 | 1125 | 0.4574 | 0.8664 | 0.8664 | 0.8664 | 0.8656 |
79
+ | 0.3178 | 18.99 | 1187 | 0.4504 | 0.8703 | 0.8697 | 0.8703 | 0.8687 |
80
+ | 0.2976 | 20.0 | 1250 | 0.5002 | 0.8636 | 0.8619 | 0.8636 | 0.8610 |
81
+ | 0.2982 | 20.99 | 1312 | 0.4977 | 0.8720 | 0.8701 | 0.8720 | 0.8701 |
82
+ | 0.3092 | 22.0 | 1375 | 0.4820 | 0.8703 | 0.8710 | 0.8703 | 0.8687 |
83
+ | 0.2835 | 22.99 | 1437 | 0.4671 | 0.8715 | 0.8711 | 0.8715 | 0.8709 |
84
+ | 0.2596 | 24.0 | 1500 | 0.5075 | 0.8732 | 0.8737 | 0.8732 | 0.8729 |
85
+ | 0.2669 | 24.99 | 1562 | 0.4963 | 0.8732 | 0.8719 | 0.8732 | 0.8716 |
86
+ | 0.2409 | 26.0 | 1625 | 0.4955 | 0.8766 | 0.8749 | 0.8766 | 0.8754 |
87
+ | 0.2409 | 26.99 | 1687 | 0.4988 | 0.8777 | 0.8783 | 0.8777 | 0.8776 |
88
+ | 0.2683 | 28.0 | 1750 | 0.5038 | 0.8794 | 0.8781 | 0.8794 | 0.8780 |
89
+ | 0.2299 | 28.99 | 1812 | 0.5038 | 0.8771 | 0.8760 | 0.8771 | 0.8759 |
90
+ | 0.2394 | 29.76 | 1860 | 0.5048 | 0.8788 | 0.8779 | 0.8788 | 0.8775 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:416dbd8ec963f8bbf5c71cdf6718995d2c4fe7bbad4639ad0798eac52f0bc641
3
  size 1212638896
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce9bf2167003c6f3872b6a258eabdb9d79fb844b856eb654aeff5db6f9af6fe9
3
  size 1212638896