matthieulel commited on
Commit
7721ab8
1 Parent(s): 3d9bc60

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swinv2-base-patch4-window16-256
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: swinv2-base-patch4-window16-256-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # swinv2-base-patch4-window16-256-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window16-256](https://huggingface.co/microsoft/swinv2-base-patch4-window16-256) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.4826
24
+ - Accuracy: 0.8557
25
+ - Precision: 0.8544
26
+ - Recall: 0.8557
27
+ - F1: 0.8543
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.5098 | 0.99 | 62 | 1.2358 | 0.5569 | 0.5493 | 0.5569 | 0.5321 |
62
+ | 0.8845 | 2.0 | 125 | 0.7391 | 0.7599 | 0.7800 | 0.7599 | 0.7497 |
63
+ | 0.753 | 2.99 | 187 | 0.5997 | 0.7971 | 0.8062 | 0.7971 | 0.7903 |
64
+ | 0.6149 | 4.0 | 250 | 0.4920 | 0.8331 | 0.8285 | 0.8331 | 0.8276 |
65
+ | 0.5807 | 4.99 | 312 | 0.4623 | 0.8326 | 0.8323 | 0.8326 | 0.8315 |
66
+ | 0.5938 | 6.0 | 375 | 0.4857 | 0.8365 | 0.8403 | 0.8365 | 0.8294 |
67
+ | 0.5583 | 6.99 | 437 | 0.4680 | 0.8264 | 0.8314 | 0.8264 | 0.8243 |
68
+ | 0.5103 | 8.0 | 500 | 0.4882 | 0.8191 | 0.8312 | 0.8191 | 0.8180 |
69
+ | 0.5186 | 8.99 | 562 | 0.4341 | 0.8574 | 0.8589 | 0.8574 | 0.8546 |
70
+ | 0.4696 | 10.0 | 625 | 0.4293 | 0.8495 | 0.8484 | 0.8495 | 0.8481 |
71
+ | 0.4711 | 10.99 | 687 | 0.4396 | 0.8422 | 0.8431 | 0.8422 | 0.8414 |
72
+ | 0.4271 | 12.0 | 750 | 0.4547 | 0.8489 | 0.8500 | 0.8489 | 0.8480 |
73
+ | 0.4576 | 12.99 | 812 | 0.4424 | 0.8489 | 0.8522 | 0.8489 | 0.8473 |
74
+ | 0.4483 | 14.0 | 875 | 0.4355 | 0.8495 | 0.8531 | 0.8495 | 0.8492 |
75
+ | 0.3914 | 14.99 | 937 | 0.4360 | 0.8540 | 0.8533 | 0.8540 | 0.8532 |
76
+ | 0.3883 | 16.0 | 1000 | 0.4464 | 0.8546 | 0.8550 | 0.8546 | 0.8526 |
77
+ | 0.3421 | 16.99 | 1062 | 0.4473 | 0.8489 | 0.8486 | 0.8489 | 0.8479 |
78
+ | 0.3666 | 18.0 | 1125 | 0.4455 | 0.8540 | 0.8541 | 0.8540 | 0.8528 |
79
+ | 0.3737 | 18.99 | 1187 | 0.4587 | 0.8574 | 0.8560 | 0.8574 | 0.8561 |
80
+ | 0.3694 | 20.0 | 1250 | 0.4583 | 0.8551 | 0.8528 | 0.8551 | 0.8523 |
81
+ | 0.3269 | 20.99 | 1312 | 0.4883 | 0.8506 | 0.8494 | 0.8506 | 0.8487 |
82
+ | 0.3699 | 22.0 | 1375 | 0.4808 | 0.8501 | 0.8514 | 0.8501 | 0.8486 |
83
+ | 0.3395 | 22.99 | 1437 | 0.4706 | 0.8484 | 0.8493 | 0.8484 | 0.8477 |
84
+ | 0.3147 | 24.0 | 1500 | 0.4676 | 0.8568 | 0.8556 | 0.8568 | 0.8557 |
85
+ | 0.3352 | 24.99 | 1562 | 0.4868 | 0.8557 | 0.8543 | 0.8557 | 0.8538 |
86
+ | 0.3007 | 26.0 | 1625 | 0.4887 | 0.8489 | 0.8492 | 0.8489 | 0.8475 |
87
+ | 0.3049 | 26.99 | 1687 | 0.4838 | 0.8534 | 0.8532 | 0.8534 | 0.8526 |
88
+ | 0.3228 | 28.0 | 1750 | 0.4910 | 0.8551 | 0.8539 | 0.8551 | 0.8536 |
89
+ | 0.3005 | 28.99 | 1812 | 0.4846 | 0.8534 | 0.8517 | 0.8534 | 0.8518 |
90
+ | 0.2972 | 29.76 | 1860 | 0.4826 | 0.8557 | 0.8544 | 0.8557 | 0.8543 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:183446a0742b665ca7c8938110f143d70d2f76f6a0f95a32d266fabbfec3c324
3
  size 347678296
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3f68e542e1910e8c5213c7c3658a050e75522eeadb635c43a25cb7daefc5f02
3
  size 347678296