matthieulel commited on
Commit
9a4b75b
1 Parent(s): 3f14aa2

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swinv2-tiny-patch4-window16-256
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: swinv2-tiny-patch4-window16-256-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # swinv2-tiny-patch4-window16-256-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window16-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window16-256) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.4567
24
+ - Accuracy: 0.8529
25
+ - Precision: 0.8523
26
+ - Recall: 0.8529
27
+ - F1: 0.8503
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.723 | 0.99 | 62 | 1.4631 | 0.4803 | 0.5152 | 0.4803 | 0.4359 |
62
+ | 1.1597 | 2.0 | 125 | 0.9498 | 0.6759 | 0.6942 | 0.6759 | 0.6657 |
63
+ | 0.9305 | 2.99 | 187 | 0.6600 | 0.7728 | 0.7592 | 0.7728 | 0.7620 |
64
+ | 0.7634 | 4.0 | 250 | 0.6276 | 0.7875 | 0.7831 | 0.7875 | 0.7765 |
65
+ | 0.6924 | 4.99 | 312 | 0.5762 | 0.7943 | 0.7972 | 0.7943 | 0.7934 |
66
+ | 0.6992 | 6.0 | 375 | 0.5421 | 0.8123 | 0.8128 | 0.8123 | 0.8059 |
67
+ | 0.6731 | 6.99 | 437 | 0.5244 | 0.8129 | 0.8153 | 0.8129 | 0.8108 |
68
+ | 0.6274 | 8.0 | 500 | 0.5279 | 0.8055 | 0.8140 | 0.8055 | 0.8019 |
69
+ | 0.6096 | 8.99 | 562 | 0.4737 | 0.8354 | 0.8336 | 0.8354 | 0.8321 |
70
+ | 0.5906 | 10.0 | 625 | 0.4792 | 0.8382 | 0.8382 | 0.8382 | 0.8357 |
71
+ | 0.5839 | 10.99 | 687 | 0.5093 | 0.8224 | 0.8322 | 0.8224 | 0.8199 |
72
+ | 0.5478 | 12.0 | 750 | 0.4601 | 0.8433 | 0.8429 | 0.8433 | 0.8411 |
73
+ | 0.5678 | 12.99 | 812 | 0.5018 | 0.8269 | 0.8322 | 0.8269 | 0.8233 |
74
+ | 0.5586 | 14.0 | 875 | 0.4503 | 0.8439 | 0.8444 | 0.8439 | 0.8423 |
75
+ | 0.5267 | 14.99 | 937 | 0.4492 | 0.8444 | 0.8416 | 0.8444 | 0.8424 |
76
+ | 0.5143 | 16.0 | 1000 | 0.4543 | 0.8484 | 0.8458 | 0.8484 | 0.8442 |
77
+ | 0.4608 | 16.99 | 1062 | 0.4616 | 0.8427 | 0.8419 | 0.8427 | 0.8398 |
78
+ | 0.4914 | 18.0 | 1125 | 0.4477 | 0.8501 | 0.8501 | 0.8501 | 0.8479 |
79
+ | 0.4889 | 18.99 | 1187 | 0.4738 | 0.8337 | 0.8383 | 0.8337 | 0.8310 |
80
+ | 0.4943 | 20.0 | 1250 | 0.4758 | 0.8388 | 0.8373 | 0.8388 | 0.8352 |
81
+ | 0.4759 | 20.99 | 1312 | 0.4550 | 0.8478 | 0.8484 | 0.8478 | 0.8456 |
82
+ | 0.49 | 22.0 | 1375 | 0.4529 | 0.8512 | 0.8520 | 0.8512 | 0.8489 |
83
+ | 0.4546 | 22.99 | 1437 | 0.4567 | 0.8472 | 0.8456 | 0.8472 | 0.8447 |
84
+ | 0.4638 | 24.0 | 1500 | 0.4598 | 0.8450 | 0.8438 | 0.8450 | 0.8431 |
85
+ | 0.4591 | 24.99 | 1562 | 0.4655 | 0.8529 | 0.8539 | 0.8529 | 0.8507 |
86
+ | 0.413 | 26.0 | 1625 | 0.4512 | 0.8546 | 0.8526 | 0.8546 | 0.8514 |
87
+ | 0.4268 | 26.99 | 1687 | 0.4511 | 0.8517 | 0.8506 | 0.8517 | 0.8496 |
88
+ | 0.4497 | 28.0 | 1750 | 0.4595 | 0.8551 | 0.8536 | 0.8551 | 0.8518 |
89
+ | 0.4183 | 28.99 | 1812 | 0.4556 | 0.8540 | 0.8532 | 0.8540 | 0.8512 |
90
+ | 0.4211 | 29.76 | 1860 | 0.4567 | 0.8529 | 0.8523 | 0.8529 | 0.8503 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b82417c1a51549b812685e22fb0bc6cb4fd51ade0a982fd54c55737d64bd6d7a
3
  size 110374752
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2365500ad889fa49ccbe6ffb4b40dad0bd0ce01e7517150f99eb4a0df5c603de
3
  size 110374752