matthieulel commited on
Commit
acce1f1
1 Parent(s): b61251c

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-large-patch32-384
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: vit-large-patch32-384-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # vit-large-patch32-384-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [google/vit-large-patch32-384](https://huggingface.co/google/vit-large-patch32-384) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.6787
24
+ - Accuracy: 0.8343
25
+ - Precision: 0.8336
26
+ - Recall: 0.8343
27
+ - F1: 0.8326
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0001
47
+ - train_batch_size: 128
48
+ - eval_batch_size: 128
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 512
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.3342 | 0.99 | 31 | 1.0491 | 0.6313 | 0.6077 | 0.6313 | 0.6052 |
62
+ | 0.7979 | 1.98 | 62 | 0.6901 | 0.7672 | 0.7717 | 0.7672 | 0.7652 |
63
+ | 0.7197 | 2.98 | 93 | 0.6200 | 0.7785 | 0.7716 | 0.7785 | 0.7705 |
64
+ | 0.6321 | 4.0 | 125 | 0.5693 | 0.8061 | 0.8035 | 0.8061 | 0.7957 |
65
+ | 0.5768 | 4.99 | 156 | 0.5501 | 0.8112 | 0.8213 | 0.8112 | 0.8134 |
66
+ | 0.5173 | 5.98 | 187 | 0.5165 | 0.8213 | 0.8306 | 0.8213 | 0.8202 |
67
+ | 0.4781 | 6.98 | 218 | 0.5220 | 0.8106 | 0.8161 | 0.8106 | 0.8090 |
68
+ | 0.451 | 8.0 | 250 | 0.5133 | 0.8185 | 0.8227 | 0.8185 | 0.8153 |
69
+ | 0.4373 | 8.99 | 281 | 0.5118 | 0.8303 | 0.8325 | 0.8303 | 0.8288 |
70
+ | 0.3826 | 9.98 | 312 | 0.5280 | 0.8258 | 0.8269 | 0.8258 | 0.8243 |
71
+ | 0.378 | 10.98 | 343 | 0.5477 | 0.8174 | 0.8156 | 0.8174 | 0.8142 |
72
+ | 0.3509 | 12.0 | 375 | 0.5437 | 0.8281 | 0.8292 | 0.8281 | 0.8244 |
73
+ | 0.3358 | 12.99 | 406 | 0.5627 | 0.8258 | 0.8268 | 0.8258 | 0.8241 |
74
+ | 0.3027 | 13.98 | 437 | 0.5558 | 0.8326 | 0.8341 | 0.8326 | 0.8310 |
75
+ | 0.3027 | 14.98 | 468 | 0.5703 | 0.8326 | 0.8358 | 0.8326 | 0.8295 |
76
+ | 0.2786 | 16.0 | 500 | 0.5791 | 0.8281 | 0.8268 | 0.8281 | 0.8249 |
77
+ | 0.2379 | 16.99 | 531 | 0.5864 | 0.8275 | 0.8264 | 0.8275 | 0.8251 |
78
+ | 0.2426 | 17.98 | 562 | 0.5984 | 0.8320 | 0.8320 | 0.8320 | 0.8305 |
79
+ | 0.2325 | 18.98 | 593 | 0.6217 | 0.8264 | 0.8281 | 0.8264 | 0.8252 |
80
+ | 0.2208 | 20.0 | 625 | 0.6166 | 0.8258 | 0.8230 | 0.8258 | 0.8236 |
81
+ | 0.2196 | 20.99 | 656 | 0.6308 | 0.8286 | 0.8280 | 0.8286 | 0.8259 |
82
+ | 0.2077 | 21.98 | 687 | 0.6242 | 0.8326 | 0.8307 | 0.8326 | 0.8305 |
83
+ | 0.2048 | 22.98 | 718 | 0.6801 | 0.8275 | 0.8303 | 0.8275 | 0.8263 |
84
+ | 0.1886 | 24.0 | 750 | 0.6615 | 0.8264 | 0.8280 | 0.8264 | 0.8256 |
85
+ | 0.2007 | 24.99 | 781 | 0.6847 | 0.8275 | 0.8280 | 0.8275 | 0.8267 |
86
+ | 0.1815 | 25.98 | 812 | 0.6669 | 0.8326 | 0.8311 | 0.8326 | 0.8305 |
87
+ | 0.1958 | 26.98 | 843 | 0.6766 | 0.8371 | 0.8374 | 0.8371 | 0.8357 |
88
+ | 0.1806 | 28.0 | 875 | 0.6679 | 0.8360 | 0.8353 | 0.8360 | 0.8342 |
89
+ | 0.1835 | 28.99 | 906 | 0.6767 | 0.8348 | 0.8334 | 0.8348 | 0.8328 |
90
+ | 0.1796 | 29.76 | 930 | 0.6787 | 0.8343 | 0.8336 | 0.8343 | 0.8326 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2dd09726a905eebda7047808af91c3100466600d486ff84884a444ea6559283b
3
  size 1222518288
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2235ee13a58901e1d3f5e7b3047488c1f606eebc8ce432c2ba46b0f11a25d6a2
3
  size 1222518288