--- license: apache-2.0 base_model: google/vit-large-patch32-384 tags: - image-classification - vision - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: vit-large-patch32-384-finetuned-galaxy10-decals results: [] --- # vit-large-patch32-384-finetuned-galaxy10-decals This model is a fine-tuned version of [google/vit-large-patch32-384](https://huggingface.co/google/vit-large-patch32-384) on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set: - Loss: 0.6766 - Accuracy: 0.8371 - Precision: 0.8374 - Recall: 0.8371 - F1: 0.8357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.3342 | 0.99 | 31 | 1.0491 | 0.6313 | 0.6077 | 0.6313 | 0.6052 | | 0.7979 | 1.98 | 62 | 0.6901 | 0.7672 | 0.7717 | 0.7672 | 0.7652 | | 0.7197 | 2.98 | 93 | 0.6200 | 0.7785 | 0.7716 | 0.7785 | 0.7705 | | 0.6321 | 4.0 | 125 | 0.5693 | 0.8061 | 0.8035 | 0.8061 | 0.7957 | | 0.5768 | 4.99 | 156 | 0.5501 | 0.8112 | 0.8213 | 0.8112 | 0.8134 | | 0.5173 | 5.98 | 187 | 0.5165 | 0.8213 | 0.8306 | 0.8213 | 0.8202 | | 0.4781 | 6.98 | 218 | 0.5220 | 0.8106 | 0.8161 | 0.8106 | 0.8090 | | 0.451 | 8.0 | 250 | 0.5133 | 0.8185 | 0.8227 | 0.8185 | 0.8153 | | 0.4373 | 8.99 | 281 | 0.5118 | 0.8303 | 0.8325 | 0.8303 | 0.8288 | | 0.3826 | 9.98 | 312 | 0.5280 | 0.8258 | 0.8269 | 0.8258 | 0.8243 | | 0.378 | 10.98 | 343 | 0.5477 | 0.8174 | 0.8156 | 0.8174 | 0.8142 | | 0.3509 | 12.0 | 375 | 0.5437 | 0.8281 | 0.8292 | 0.8281 | 0.8244 | | 0.3358 | 12.99 | 406 | 0.5627 | 0.8258 | 0.8268 | 0.8258 | 0.8241 | | 0.3027 | 13.98 | 437 | 0.5558 | 0.8326 | 0.8341 | 0.8326 | 0.8310 | | 0.3027 | 14.98 | 468 | 0.5703 | 0.8326 | 0.8358 | 0.8326 | 0.8295 | | 0.2786 | 16.0 | 500 | 0.5791 | 0.8281 | 0.8268 | 0.8281 | 0.8249 | | 0.2379 | 16.99 | 531 | 0.5864 | 0.8275 | 0.8264 | 0.8275 | 0.8251 | | 0.2426 | 17.98 | 562 | 0.5984 | 0.8320 | 0.8320 | 0.8320 | 0.8305 | | 0.2325 | 18.98 | 593 | 0.6217 | 0.8264 | 0.8281 | 0.8264 | 0.8252 | | 0.2208 | 20.0 | 625 | 0.6166 | 0.8258 | 0.8230 | 0.8258 | 0.8236 | | 0.2196 | 20.99 | 656 | 0.6308 | 0.8286 | 0.8280 | 0.8286 | 0.8259 | | 0.2077 | 21.98 | 687 | 0.6242 | 0.8326 | 0.8307 | 0.8326 | 0.8305 | | 0.2048 | 22.98 | 718 | 0.6801 | 0.8275 | 0.8303 | 0.8275 | 0.8263 | | 0.1886 | 24.0 | 750 | 0.6615 | 0.8264 | 0.8280 | 0.8264 | 0.8256 | | 0.2007 | 24.99 | 781 | 0.6847 | 0.8275 | 0.8280 | 0.8275 | 0.8267 | | 0.1815 | 25.98 | 812 | 0.6669 | 0.8326 | 0.8311 | 0.8326 | 0.8305 | | 0.1958 | 26.98 | 843 | 0.6766 | 0.8371 | 0.8374 | 0.8371 | 0.8357 | | 0.1806 | 28.0 | 875 | 0.6679 | 0.8360 | 0.8353 | 0.8360 | 0.8342 | | 0.1835 | 28.99 | 906 | 0.6767 | 0.8348 | 0.8334 | 0.8348 | 0.8328 | | 0.1796 | 29.76 | 930 | 0.6787 | 0.8343 | 0.8336 | 0.8343 | 0.8326 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.15.1