mav23 commited on
Commit
dcdbb15
1 Parent(s): 8792042

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. README.md +307 -0
  3. amd-olmo-1b-sft-dpo.Q4_0.gguf +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ amd-olmo-1b-sft-dpo.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - allenai/dolma
5
+ pipeline_tag: text-generation
6
+ ---
7
+ # AMD-OLMo
8
+
9
+ AMD-OLMo are a series of 1B language models trained from scratch by AMD on AMD Instinct™ MI250 GPUs. The training code used is based on [OLMo](https://github.com/allenai/OLMo).
10
+ We release the pre-trained model, supervised fine-tuned model, and DPO aligned model as follows:
11
+
12
+ - [AMD-OLMo-1B](https://huggingface.co/amd/AMD-OLMo-1B): Pre-trained on a subset of [Dolma v1.7](https://huggingface.co/datasets/allenai/dolma) that consists of 1.3 trillion tokens.
13
+ - [AMD-OLMo-1B-SFT](https://huggingface.co/amd/AMD-OLMo-1B-SFT): Supervised fine-tuned (SFT) on [Tulu V2](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) dataset (1st phase) and then [OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5), [WebInstructSub](https://huggingface.co/datasets/TIGER-Lab/WebInstructSub), and [Code-Feedback](https://huggingface.co/datasets/m-a-p/Code-Feedback) datasets (2nd phase).
14
+ - [AMD-OLMo-1B-SFT-DPO](https://huggingface.co/amd/AMD-OLMo-1B-SFT-DPO): Aligned with human preferences using Direct Preference Optimization (DPO) on [UltraFeedback](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned) dataset.
15
+
16
+ Description:
17
+
18
+ - **Hardware**: Each compute node consists of 4 AMD Instinct™ MI250 GPUs. We use 16 nodes for pretraining AMD-OLMo-1B
19
+
20
+ - **Training throughput**: 12,200 tokens/sec/gpu
21
+
22
+ - **Model architecture**: AMD-OLMo-1B is based on the model architecture and training set up of fully open source 1 billion version of [OLMo-1B](https://github.com/allenai/OLMo) with the details below:
23
+
24
+ | Parameter size | Number of layers | Number of heads | Hidden size | Context length | Vocabulary Size |
25
+ |-----------------:|:------------------:|:-----------------:|:-------------:|:----------------:|:----------------:|
26
+ | 1.2B | 16 | 16 | 2048 | 2048 | 50,280 |
27
+
28
+ - **Hyper-parameters**:
29
+ |Stage | LR schedule | Peak LR | Warmup steps |Epochs| Batch size (tokens) |
30
+ |------------:|:--------------:|:---------:|:--------------:|:------:|:---------------------:|
31
+ |Pretraining | Cosine | 4.0e-4 | 2000 | 1 | 4M |
32
+ |SFT Phase 1 | Linear | 2.0e-5 | 200 | 3 | 262K |
33
+ |SFT Phase 2 | Linear | 2.0e-5 | 200 | 3 | 1024K |
34
+ |DPO | Cosine | 4.0e-6 | 47 | 1 | 64K |
35
+
36
+ For more details, please refer to our [blog](https://www.amd.com/en/developer/resources/technical-articles/introducing-the-first-amd-1b-language-model.html).
37
+
38
+ ## Usage
39
+
40
+ ### PyTorch on AMD GPUs
41
+ For running pytorch on AMD GPUs you can use the following rocm docker as in [docker hub](https://hub.docker.com/r/rocm/pytorch)
42
+
43
+ ```bash
44
+ docker pull rocm/pytorch:latest
45
+ # Inside docker
46
+ pip install transformers
47
+ ```
48
+
49
+ ### Use Example
50
+
51
+ ```python
52
+ from transformers import AutoModelForCausalLM, AutoTokenizer
53
+
54
+ model = AutoModelForCausalLM.from_pretrained("amd/AMD-OLMo-1B-SFT").to("cuda") # remove .to("cuda") to load on cpu
55
+ tokenizer = AutoTokenizer.from_pretrained("amd/AMD-OLMo-1B-SFT")
56
+
57
+ prompt = "What is large language model?"
58
+ bos = tokenizer.eos_token
59
+ template = bos + "<|user|>\n{prompt}\n<|assistant|>\n"
60
+
61
+ input_text = template.format(prompt=prompt)
62
+ inputs = tokenizer([input_text], return_tensors='pt', return_token_type_ids=False).to("cuda")
63
+ outputs = model.generate(**inputs, max_new_tokens=1000, do_sample=True, top_k=50, top_p=0.95)
64
+ print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
65
+ ```
66
+
67
+
68
+ ## Main Results
69
+
70
+ ### Pretraining Results
71
+
72
+ | **Standard Benchmarks** | [TinyLLaMA-v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) (1.1B) | [MobiLLaMA-1B](https://huggingface.co/MBZUAI/MobiLlama-1B) (1.2B) | [OLMo-1B](https://huggingface.co/allenai/OLMo-1B-hf) (1.2B) | [OpenELM-1_1B](https://huggingface.co/apple/OpenELM-1_1B) (1.1B) | [OLMo-1B-0724-hf](https://huggingface.co/allenai/OLMo-1B-0724-hf) (1.2B) | [AMD-OLMo-1B](https://huggingface.co/amd/AMD-OLMo-1B) (1.2B) |
73
+ |---------------------:|:-----------------:|:-----------:|:-----------:|:---------------:|:---------------:|:-----------:|
74
+ | **arc_easy** | 55.47 | 56.65 | 57.28 | 55.43 | 56.65 | **63.64** |
75
+ | **arc_challenge** | 32.68 | 32.00 | 31.06 | 32.34 | 32.34 | **33.70** |
76
+ | **hellaswag** | 61.47 | 61.80 | 62.92 | 64.81 | **66.12** | 63.61 |
77
+ | **piqa** | 73.56 | 75.30 | 75.14 | **75.57** | 75.08 | **75.57** |
78
+ | **boolq** | 55.99 | 60.83 | 61.74 | 63.58 | **66.18** | 60.58 |
79
+ | **sciq** | 89.30 | 88.20 | 87.00 | 90.60 | 92.70 | **93.20** |
80
+ | **winogrande** | 59.43 | 59.27 | 59.98 | **61.72** | **61.72** | 61.64 |
81
+ | **openbookqa** | **36.80** | 35.40 | 36.20 | 36.20 | 35.60 | 35.80 |
82
+ | **mmlu (0-shot)** | 25.02 | 24.81 | 24.23 | 25.26 | **25.45** | 24.88 |
83
+ | **gsm8k (8-shot)** | 1.82 | 0.00 | 2.50 | 2.81 | **8.95** | 2.88 |
84
+ | **bbh (3-shot)** | **25.63** | 0.00 | **25.63** | 16.77 | 21.67 | 20.95 |
85
+ | **Average** | 47.02 | 44.93 | 47.61 | 47.73 | **49.31** | 48.77 |
86
+
87
+
88
+ ### Instruction Tuning Results
89
+
90
+ | **Standard Benchmarks**|[TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) (1.1B)|[MobiLlama-1B-Chat](https://huggingface.co/MBZUAI/MobiLlama-1B-Chat) (1.2B)|[OpenELM-1_1B-Instruct](https://huggingface.co/apple/OpenELM-1_1B-Instruct) (1.1B)|[AMD-OLMo-1B-SFT](https://huggingface.co/amd/AMD-OLMo-1B-SFT) (1.2B)|[AMD-OLMo-1B-SFT-DPO](https://huggingface.co/amd/AMD-OLMo-1B-SFT-DPO) (1.2B)|
91
+ |------------------:|:---------:|:---------:|:---------:|:---------:|:---------:|
92
+ | **arc_easy** | 54.42 | 57.41 | 52.44 | 63.68 | **64.31** |
93
+ | **arc_challenge** | 32.85 | 34.56 | **37.80** | 37.12 | 37.37 |
94
+ | **hellaswag** | 60.40 | 62.51 | **71.29** | 61.63 | 61.91 |
95
+ | **piqa** | 74.48 | **75.73** | 75.03 | 74.43 | 74.16 |
96
+ | **boolq** | 61.04 | 55.66 | **70.28** | 68.53 | 70.24 |
97
+ | **sciq** | 88.40 | 87.10 | 89.50 | 91.20 | **92.10** |
98
+ | **winogrande** | 60.54 | 60.77 | **62.19** | 60.22 | 60.62 |
99
+ | **openbookqa** | 37.20 | 36.80 | 39.20 | 37.40 | **40.20** |
100
+ | **mmlu** | 24.61 | 25.25 | 25.54 | 29.97 | **30.52** |
101
+ | **gsm8k (8-shot)**| 2.81 | 0.23 | 1.82 | **18.20** | 15.77 |
102
+ | **bbh (3-shot)** | **26.83** | 0.00 | 13.40 | 25.17 | 25.45 |
103
+ | **Average** | 47.60 | 45.09 | 48.95 | 51.60 | **52.06** |
104
+
105
+ |**Chat Benchmarks**|[TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) (1.1B)|[MobiLlama-1B-Chat](https://huggingface.co/MBZUAI/MobiLlama-1B-Chat) (1.2B)|[OpenELM-1_1B-Instruct](https://huggingface.co/apple/OpenELM-1_1B-Instruct) (1.1B)|[AMD-OLMo-1B-SFT](https://huggingface.co/amd/AMD-OLMo-1B-SFT) (1.2B)|[AMD-OLMo-1B-SFT-DPO](https://huggingface.co/amd/AMD-OLMo-1B-SFT-DPO) (1.2B)|
106
+ |------------------:|:---------:|:---------:|:---------:|:---------:|:---------:|
107
+ | **AlpacaEval 1 (Win Rate)** | 50.81 | 34.90 | 37.72 | 50.12 | **54.22** |
108
+ | **AlpacaEval 2 (LC Win Rate)**| 1.54 | 1.59 | 0.49 | **3.88** | 2.37 |
109
+ | **MTBench** | 3.38 | 2.89 | - | **4.35** | 4.10 |
110
+
111
+ |**Responsible AI Benchmarks**|[TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) (1.1B)|[MobiLlama-1B-Chat](https://huggingface.co/MBZUAI/MobiLlama-1B-Chat) (1.2B)|[OpenELM-1_1B-Instruct](https://huggingface.co/apple/OpenELM-1_1B-Instruct) (1.1B)|[AMD-OLMo-1B-SFT](https://huggingface.co/amd/AMD-OLMo-1B-SFT) (1.2B)|[AMD-OLMo-1B-SFT-DPO](https://huggingface.co/amd/AMD-OLMo-1B-SFT-DPO) (1.2B)|
112
+ |------------------:|:---------:|:---------:|:---------:|:---------:|:---------:|
113
+ | **ToxiGen** | 41.70 | **37.23** | 42.34 | 39.04 | 39.68 |
114
+ | **crows_pairs** | 60.35 | 58.50 | 59.93 | 60.29 | **61.00** |
115
+ | **TruthfulQA-mc2**| 37.92 | 38.46 | **45.84** | 37.45 | 40.06 |
116
+
117
+ *In generating tokens for chat benchmark evaluations, we use `max_length=2048` for AlpacaEval and `max_new_tokens=2048` for MTBench.
118
+
119
+ *All numbers in above tables were obtained from our evaluations.
120
+
121
+
122
+ ## Evaluation
123
+ We use the following open source evaluation frameworks for evaluating our models:
124
+ - [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness): For evaluating on commonsense reasoning, multi-task understanding & responsible AI benchmarks
125
+ - [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval): For evaluating instruction-following capabilities of chat models.
126
+ - [MT-Bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge): For evaluating multi-turn capabilities of chat models.
127
+
128
+ ### Setup
129
+ ```bash
130
+ # lm-eval-harness
131
+ git clone https://github.com/EleutherAI/lm-evaluation-harness
132
+ cd lm-evaluation-harness
133
+ pip install -e .
134
+
135
+ # AlpacaEval
136
+ pip install git+https://github.com/tatsu-lab/alpaca_eval
137
+ cd alpaca_eval
138
+ pip install -e .
139
+
140
+ # MT-Bench
141
+ git clone https://github.com/lm-sys/FastChat.git
142
+ cd FastChat
143
+ pip install -e ".[model_worker,llm_judge]"
144
+ ```
145
+
146
+ ### Run evaluation
147
+ ```bash
148
+ # lm-eval-harness
149
+ HF_MODEL=amd/AMD-OLMo-1B-SFT-DPO
150
+ accelerate launch -m lm_eval --model hf \
151
+ --model_args pretrained=$HF_MODEL,trust_remote_code=True \
152
+ --tasks arc_easy,arc_challenge,hellaswag,piqa,boolq,sciq,winogrande,openbookqa,mmlu,gsm8k_cot,bbh_cot_fewshot,toxigen,truthfulqa,crows_pairs \
153
+ --device cuda \
154
+ --batch_size 32 \
155
+ --output_path ./lm-eval-results/$HF_MODEL
156
+ ```
157
+
158
+ ## Training
159
+
160
+ ### Setup
161
+ ```bash
162
+ WORK_DIR="<path_to_your_working_directory>"
163
+ cd $WORK_DIR
164
+ # Clone OLMo codebase:
165
+ git clone https://github.com/allenai/OLMo.git --branch v0.3.0
166
+ cd OLMo
167
+ # Clone AMD-OLMo that contains files to reproduce our model training
168
+ git clone https://huggingface.co/amd/AMD-OLMo
169
+
170
+ docker pull rocm/pytorch:latest
171
+ docker run -it --network=host --device=/dev/kfd --device=/dev/dri --group-add=video --ipc=host --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --shm-size 8G -v $WORK_DIR/OLMo:/OLMo -w /OLMo rocm/pytorch:latest
172
+
173
+ # Remove Line 17 as the docker already has ROCm PyTorch installed
174
+ sed -i '17d' pyproject.toml
175
+ pip install -e .[all]
176
+ ```
177
+
178
+ ### Download and prepare pretraining datasets
179
+ ```bash
180
+ # Download
181
+ DATA_DIR=./datasets/dolma
182
+ mkdir -p $DATA_DIR
183
+
184
+ PARALLEL_DOWNLOADS="<number_of_parallel_downloads>"
185
+ cat "AMD-OLMo/dolma_v1_7_subset.txt" | xargs -n 1 -P $PARALLEL_DOWNLOADS wget -q -P $DATA_DIR
186
+
187
+ # Prepare
188
+ NUM_WORKERS="<number_of_workers>"
189
+ python scripts/prepare_memmap_dataset.py $DATA_DIR/*.json.gz -o $DATA_DIR/memmap_dataset --workers $NUM_WORKERS
190
+ ```
191
+
192
+ ### Download and prepare SFT datasets
193
+ ```bash
194
+ # 1st phase SFT dataset
195
+ python AMD-OLMo/prepare_sft_data.py --output_dir ./datasets/tulu --tokenizer tokenizers/allenai_eleuther-ai-gpt-neox-20b-pii-special.json --dataset tulu
196
+
197
+ # 2nd phase SFT dataset
198
+ python AMD-OLMo/prepare_sft_data.py --output_dir ./datasets/OpenHermes_WebInstructSub_CodeFeedBack --tokenizer tokenizers/allenai_eleuther-ai-gpt-neox-20b-pii-special.json --dataset 2nd-phase
199
+ ```
200
+
201
+ ### Run Training
202
+ Pretrainig config: [AMD-OLMo-1B.yaml](AMD-OLMo-1B.yaml)
203
+
204
+ SFT config: [AMD-OLMo-1B-SFT-1st-phase.yaml](AMD-OLMo-1B-SFT-1st-phase.yaml) and [AMD-OLMo-1B-SFT-2nd-phase.yaml](AMD-OLMo-1B-SFT-2nd-phase.yaml)
205
+ ```bash
206
+ # Single node
207
+ HSA_FORCE_FINE_GRAIN_PCIE=1 OMP_NUM_THREADS=128 NCCL_DEBUG=INFO torchrun --nproc_per_node=8 ./scripts/train.py AMD-OLMo/AMD-OLMo-1B.yaml
208
+
209
+ # Multiple nodes
210
+ HSA_FORCE_FINE_GRAIN_PCIE=1 OMP_NUM_THREADS=128 NCCL_DEBUG=INFO torchrun --nnodes=$nnodes --node-rank=$node_rank --master_addr=$master_addr --master_port=$master_port --nproc_per_node=8 ./scripts/train.py AMD-OLMo/AMD-OLMo-1B.yaml
211
+ ```
212
+
213
+ ### Run DPO Training
214
+
215
+ DPO recipe: [AMD-OLMo-1B-dpo.yaml](AMD-OLMo-1B-dpo.yaml).
216
+ ```bash
217
+ # install trl library
218
+ git clone https://github.com/huggingface/trl.git -b v0.8.6
219
+
220
+ # replace dpo_trainer.py
221
+ cp AMD-OLMo/dpo_trainer.py trl/trl/trainer
222
+
223
+ pip install -e ./trl
224
+
225
+ # install alignment-handbook
226
+ git clone https://github.com/huggingface/alignment-handbook.git hf-align
227
+ # 70769f9 is the main branch on 2024-04-11.
228
+ cd hf-align && git checkout 70769f9 && cd ..
229
+
230
+ pip install -e ./hf-align
231
+
232
+ # Copy AMD OLMo DPO recipe to hf-align/recipes.
233
+ cp AMD-OLMo/AMD-OLMo-1B-dpo.yaml hf-align/recipes/
234
+
235
+ # Prepare the converted AMD-OLMo SFT Huggingface model to ckpt_dir.
236
+ ckpt_dir=amd/AMD-OLMo-1B-SFT
237
+ local_tokenizer_dir=${ckpt_dir}
238
+
239
+ # Set output checkpoint dir.
240
+ dpo_ckpt_dir=<your_output_checkpoint_dir>
241
+
242
+ accelerate launch --config_file hf-align/recipes/accelerate_configs/deepspeed_zero3.yaml \
243
+ hf-align/scripts/run_dpo.py hf-align/recipes/AMD-OLMo-1B-dpo.yaml \
244
+ --trust_remote_code=true \
245
+ --model_name_or_path=${ckpt_dir} \
246
+ --tokenizer_name_or_path=${local_tokenizer_dir} \
247
+ --output_dir=${dpo_ckpt_dir} \
248
+ --num_train_epochs=1 \
249
+ --learning_rate=4e-6 \
250
+ --beta=0.3 \
251
+ --loss_type=sigmoid
252
+ ```
253
+
254
+ ## Bias, Risks, and Limitations
255
+
256
+ - The models are being released for research purposes only and are not intended for use cases that require high levels of factuality, safety critical situations, health or medical applications, generating false information, facilitating toxic conversations.
257
+ - Model checkpoints are made accessible without any safety guarantees. It is crucial for users to conduct comprehensive evaluations and implement safety filtering mechanisms as per their respective use cases.
258
+ - It may be possible to prompt the model to generate content that may be factually inaccurate, harmful, violent, toxic, biased, or otherwise objectionable. Such content may also get generated by prompts that did not intend to produce output as such. Users are thus requested to be aware of this and exercise caution and responsible thinking when using the model.
259
+ - Multi-lingual abilities of the models have not been tested and thus may misunderstand and generate erroneous responses across different languages.
260
+
261
+ ## Appendix
262
+ ### Evaluation Metrics
263
+ | **Benchmark** | Metric |
264
+ |---------------------:|:-----------------:|
265
+ | **arc_easy** | Normalized Accuracy |
266
+ | **arc_challenge** | Normalized Accuracy |
267
+ | **hellaswag** | Normalized Accuracy |
268
+ | **piqa** | Accuracy |
269
+ | **boolq** | Accuracy |
270
+ | **sciq** | Accuracy |
271
+ | **winogrande** | Accuracy |
272
+ | **openbookqa** | Normalized Accuracy |
273
+ | **mmlu** | Accuracy |
274
+ | **gsm8k (8-shot)** | Exact Match (Flexible Extract) |
275
+ | **bbh (3-shot)** | Exact Match |
276
+ | **ToxiGen** | Accuracy |
277
+ | **crows_pairs** | PCT Stereotype |
278
+ | **TruthfulQA-mc2** | Accuracy |
279
+ | **AlpacaEval 1 (Win Rate)** | Win Rate (chatgpt_fn) |
280
+ | **AlpacaEval 2 (LC Win Rate)** | Length Control Win Rate (weighted_alpaca_eval_gpt4_turbo) |
281
+ | **MTBench** | Average score for single-answer grading (2 turns) |
282
+
283
+ Feel free to cite our AMD-OLMo models:
284
+ ```bash
285
+ @misc{AMD-OLMo,
286
+ title = {AMD-OLMo: A series of 1B language models trained from scratch by AMD on AMD Instinct™ MI250 GPUs.},
287
+ url = {https://huggingface.co/amd/AMD-OLMo},
288
+ author = {Jiang Liu, Jialian Wu, Prakamya Mishra, Zicheng Liu, Sudhanshu Ranjan, Pratik Prabhanjan Brahma, Yusheng Su, Gowtham Ramesh, Peng Sun, Zhe Li, Dong Li, Lu Tian, Emad Barsoum},
289
+ month = {October},
290
+ year = {2024}
291
+ }
292
+ ```
293
+
294
+ #### License
295
+ Copyright (c) 2018-2024 Advanced Micro Devices, Inc. All Rights Reserved.
296
+
297
+ Licensed under the Apache License, Version 2.0 (the "License");
298
+ you may not use this file except in compliance with the License.
299
+ You may obtain a copy of the License at
300
+
301
+ http://www.apache.org/licenses/LICENSE-2.0
302
+
303
+ Unless required by applicable law or agreed to in writing, software
304
+ distributed under the License is distributed on an "AS IS" BASIS,
305
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
306
+ See the License for the specific language governing permissions and
307
+ limitations under the License.
amd-olmo-1b-sft-dpo.Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d45039477f0f6600c7950abb2bf8102f63d942ae463a1f3b2394040cc98ba7a
3
+ size 690266912