mav23 commited on
Commit
4b9e1a3
1 Parent(s): 54f3880

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. README.md +99 -0
  3. tipo-500m.Q4_0.gguf +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tipo-500m.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: kohaku-license-1.0
4
+ datasets:
5
+ - laion/conceptual-captions-12m-webdataset
6
+ - CaptionEmporium/coyo-hd-11m-llavanext
7
+ - KBlueLeaf/danbooru2023-metadata-database
8
+ - graph-based-captions/GBC10M
9
+ language:
10
+ - en
11
+ pipeline_tag: text-generation
12
+ library_name: transformers
13
+ ---
14
+ # TIPO: Text to Image with text presampling for Prompt Optimization
15
+
16
+ 500M LLaMA arch model trained for TIPO.<br>
17
+ Tech Report: https://hackmd.io/@KBlueLeaf/BJULOQBR0
18
+
19
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/630593e2fca1d8d92b81d2a1/fc9ovmARapQmgq9DZ7ApJ.png)
20
+
21
+ ## Introduction
22
+
23
+ In this project, we introduce "TIPO" (**T**ext to **I**mage with text presampling for **P**rompt **O**ptimization), an innovative framework designed to significantly enhance the quality and usability of Text-to-Image (T2I) generative models. TIPO utilizes the Large Language Models (LLMs) to perform "Text Presampling" within the inference pipeline of text-to-image generative modeling. By refining and extending user input prompts, TIPO enables generative models to produce superior results with minimal user effort, making T2I systems more accessible and effective for a wider range of users.
24
+
25
+ ## Usage
26
+ Use updated version of DTG extension (renamed to z-tipo-extension), current version of z-tipo-extension support stable-diffusion-webui, stable-diffusion-webui-forge and ComfyUI. SD-Next haven't been tested.
27
+ https://github.com/KohakuBlueleaf/z-tipo-extension
28
+
29
+ ## Model arch and Training
30
+ This model is LLaMA arch with 500M parameters, the training data is combined version of Danbooru2023, GBC10M and Coyo-HD-11M.<br>
31
+ The total token seen is around 30B tokens.<br>
32
+ For more information please refer to the tech report and following table.
33
+
34
+ | | TIPO-200M | TIPO-500M |
35
+ | ----------------- | ------------------------------------------------------------------------------ | ------------------------------------------------------------------------------ |
36
+ | Arch | LLaMA | LLaMA |
37
+ | Max ctx length | 1024 | 1024 |
38
+ | Batch Size | 2048 | 3584 |
39
+ | Training dataset | Danbooru, GBC10M, 5epoch<br />Danbooru, GBC10M, Coyo11M, 3epoch | Danbooru, GBC10M, Coyo11M, 5epoch |
40
+ | Real Token Seen* | 40B token | 30B token |
41
+ | Training Hardware | RTX 3090 x 4 | H100 x 8 |
42
+ | Training Time | 420 hour` | 100 hour` |
43
+ | URL | [KBlueLeaf/TIPO-200M · Hugging Face](https://huggingface.co/KBlueLeaf/TIPO-200M) | [KBlueLeaf/TIPO-500M · Hugging Face](https://huggingface.co/KBlueLeaf/TIPO-500M) |
44
+
45
+ *: We only count "non-padding token" in the token seen, since all the training data have very large length range <br/>
46
+ `: Since the training data is pretty short, it cost more time to reach same token seen than general LLM pretraining.<br/>
47
+ As reference, with 4096 as max ctx length and almost all the data have reach that length, you may only need 2days to reach 10B token seen on RTX 3090 x 4 with 200M model.
48
+
49
+ ### Evaluation
50
+ We have tested TIPO in several metric:
51
+
52
+ #### 1. Aesthetic Score (Higher is Better)
53
+
54
+ We compute the Aesthetic Score using the **Aesthetic Predictor V2.5**. This metric is calculated on the short/truncated long test.
55
+
56
+ ![Aesthetic Score Distribution](https://hackmd.io/_uploads/HkJphkSCA.png)
57
+
58
+ *Figure 1: Aesthetic Score distribution.*
59
+
60
+ #### 2. AI Corrupt Score (Higher is Better)
61
+
62
+ The AI Corrupt Score is obtained from the **AICorruptMetrics** in **sdeval**.
63
+
64
+ This metric is calculated on the short/truncated long test.
65
+
66
+ ![AI Corrupt Score Distribution](https://hackmd.io/_uploads/SJlktvE0R.png)
67
+
68
+ *Figure 2: AI Corrupt Score distribution.*
69
+
70
+ #### 3. Frechet Dino Distance (FDD) on Scenery Tag Test
71
+
72
+ We use FDD on the Scenery Tag Test to demonstrate that when input prompts address a smaller distribution, the model struggles to generate images that reflect the true distribution. However, with **TIPO**, this issue is mitigated.
73
+
74
+ | FDD Model | `<meta> scenery` only | `<meta> scenery` + TIPO |
75
+ |------------------|-----------------------|-------------------------|
76
+ | DinoV2 ViT-S | 0.1917 | **0.1786** |
77
+ | DinoV2 ViT-B | 0.2002 | **0.1755** |
78
+ | DinoV2 ViT-L | 0.2017 | **0.1863** |
79
+ | DinoV2 ViT-G | 0.2359 | **0.2096** |
80
+
81
+ *Table 1: Frechet Dino Distance (FDD) on Scenery Tag Test.*
82
+
83
+ ## LICENSE
84
+ This model is released under [Kohaku License 1.0](https://kblueleaf.net/documents/kohaku-license/?[Your%20Organization/Name]=KohakuBlueLeaf&[Year]=2024)<br>
85
+ You can check the above provided URL or check the LICENSE file in this repo.
86
+
87
+ ### Citation
88
+ ```bibtex
89
+ @misc{yeh2024tipo,
90
+ title = {TIPO: Text to Image with text presampling for Prompt Optimization},
91
+ author = {Yeh, Shih-Ying},
92
+ year = {2024},
93
+ month = {9},
94
+ day = {29},
95
+ note = {Technical report available at \url{https://hackmd.io/@KBlueLeaf/BJULOQBR0}.
96
+ Model available at \url{https://huggingface.co/KBlueLeaf/TIPO-500M}.
97
+ Source code available at \url{https://github.com/KohakuBlueleaf/KGen}},
98
+ }
99
+ ```
tipo-500m.Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:729790acb4cde9422759f22a3e67f6c8fe2ad4218e864a5445268db6bfedb433
3
+ size 297224736