File size: 2,490 Bytes
3f7e14a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2edebcd
 
 
 
 
 
3f7e14a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2edebcd
 
 
 
 
 
 
 
 
 
3f7e14a
 
 
 
 
94ce4b1
3f7e14a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: maximo-t5-normalize
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# maximo-t5-normalize

This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9638
- Rouge1: 38.9057
- Rouge2: 19.0476
- Rougel: 39.5803
- Rougelsum: 39.467
- Gen Len: 15.2857

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 8    | 2.2357          | 17.3817 | 0.0     | 17.3817 | 17.8983   | 10.5714 |
| No log        | 2.0   | 16   | 2.1585          | 23.8431 | 14.2857 | 23.5882 | 24.101    | 13.2857 |
| No log        | 3.0   | 24   | 1.9795          | 33.3557 | 22.3971 | 34.1438 | 33.9448   | 11.7143 |
| No log        | 4.0   | 32   | 1.8823          | 29.3267 | 15.2381 | 28.5832 | 30.4088   | 13.5714 |
| No log        | 5.0   | 40   | 1.8984          | 40.4849 | 14.2857 | 40.3257 | 40.1475   | 15.8571 |
| No log        | 6.0   | 48   | 1.9456          | 32.562  | 19.0476 | 33.3501 | 33.7775   | 16.1429 |
| No log        | 7.0   | 56   | 1.9990          | 35.1207 | 19.0476 | 35.8838 | 36.2473   | 17.0    |
| No log        | 8.0   | 64   | 1.9615          | 38.9057 | 19.0476 | 39.5803 | 39.467    | 15.2857 |
| No log        | 9.0   | 72   | 1.9613          | 38.9057 | 19.0476 | 39.5803 | 39.467    | 15.2857 |
| No log        | 10.0  | 80   | 1.9638          | 38.9057 | 19.0476 | 39.5803 | 39.467    | 15.2857 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0