license: cc-by-sa-4.0
Synatra-7B-v0.3-dpo๐ง
Support Me
์๋ํธ๋ผ๋ ๊ฐ์ธ ํ๋ก์ ํธ๋ก, 1์ธ์ ์์์ผ๋ก ๊ฐ๋ฐ๋๊ณ ์์ต๋๋ค. ๋ชจ๋ธ์ด ๋ง์์ ๋์ จ๋ค๋ฉด ์ฝ๊ฐ์ ์ฐ๊ตฌ๋น ์ง์์ ์ด๋จ๊น์?
Wanna be a sponser? (Please) Contact me on Telegram AlzarTakkarsen
License
This model is strictly non-commercial (cc-by-sa-4.0) use, Under 5K MAU The "Model" is completely free (ie. base model, derivates, merges/mixes) to use for non-commercial purposes as long as the the included cc-by-sa-4.0 license in any parent repository, and the non-commercial use statute remains, regardless of other models' licences. If your service has over 5K MAU contact me for license approval.
Model Details
Base Model
mistralai/Mistral-7B-Instruct-v0.1
Trained On
A100 80GB * 1
Instruction format
It follows ChatML format and Alpaca(No-Input) format.
Model Benchmark
KOBEST_BOOLQ, SENTINEG, WIC - ZERO_SHOT
EleutherAI/lm-evaluation-harness๋ฅผ ์ฌ์ฉํ์ฌ BoolQ, SentiNeg, Wic์ ์ธก์ ํ์ต๋๋ค.
| Model | COPA | HellaSwag | BoolQ | SentiNeg | --- | --- | --- | --- | --- | --- | EleutherAI/polyglot-ko-12.8b | 0.7937 | 0.5954 | 0.4818 | 0.9117 | Synatra-7B-v0.3-base | 0.6344 | 0.5140 | 0.5226 | NaN | Synatra-7B-v0.3-dpo | 0.6380 | 0.4780 | 0.8058 | 0.8942
Ko-LLM-Leaderboard
On Benchmarking...
Implementation Code
Since, chat_template already contains insturction format above. You can use the code below.
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-7B-v0.3-dpo")
tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-7B-v0.3-dpo")
messages = [
{"role": "user", "content": "๋ฐ๋๋๋ ์๋ ํ์์์ด์ผ?"},
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])