File size: 3,902 Bytes
75c50a6
c2ef60a
c8f0cd4
75c50a6
 
 
 
 
c8f0cd4
 
 
 
 
75c50a6
c2ef60a
75c50a6
c8f0cd4
75c50a6
c8f0cd4
75c50a6
c2ef60a
75c50a6
c2ef60a
75c50a6
c8f0cd4
 
 
75c50a6
 
c2ef60a
75c50a6
c2ef60a
75c50a6
 
 
 
 
 
 
 
 
 
 
 
c2ef60a
75c50a6
c2ef60a
 
75c50a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2ef60a
75c50a6
 
 
 
 
 
 
 
 
c2ef60a
75c50a6
 
c2ef60a
 
75c50a6
 
c2ef60a
75c50a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2248bd9
75c50a6
 
 
 
 
 
 
 
ae3bfc7
75c50a6
 
 
 
c2ef60a
75c50a6
c2ef60a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
language: pl
license: apache-2.0
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
datasets:
- common_voice
metrics:
- wer
base_model: facebook/wav2vec2-large-xlsr-53
model-index:
- name: mbien/wav2vec2-large-xlsr-polish
  results:
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      name: Common Voice pl
      type: common_voice
      args: pl
    metrics:
    - type: wer
      value: 23.01
      name: Test WER
---

# Wav2Vec2-Large-XLSR-53-Polish

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Polish using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
When using this model, make sure that your speech input is sampled at 16kHz.

## Usage

The model can be used directly (without a language model) as follows:

```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "pl", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("mbien/wav2vec2-large-xlsr-polish")
model = Wav2Vec2ForCTC.from_pretrained("mbien/wav2vec2-large-xlsr-polish")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
	speech_array, sampling_rate = torchaudio.load(batch["path"])
	batch["speech"] = resampler(speech_array).squeeze().numpy()
	return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
	logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```


## Evaluation

The model can be evaluated as follows on the Polish test data of Common Voice.


```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "pl", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("mbien/wav2vec2-large-xlsr-polish")
model = Wav2Vec2ForCTC.from_pretrained("mbien/wav2vec2-large-xlsr-polish")
model.to("cuda")

chars_to_ignore_regex = '[\—\…\,\?\.\!\-\;\:\"\“\„\%\‘\”\�\«\»\'\’]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
	batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
	speech_array, sampling_rate = torchaudio.load(batch["path"])
	batch["speech"] = resampler(speech_array).squeeze().numpy()
	return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
	inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

	with torch.no_grad():
		logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

	pred_ids = torch.argmax(logits, dim=-1)
	batch["pred_strings"] = processor.batch_decode(pred_ids)
	return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```

**Test Result**: 23.01 %


## Training

The Common Voice `train`, `validation` datasets were used for training.

The script used for training can be found [here](https://colab.research.google.com/drive/1DvrFMoKp9h3zk_eXrJF2s4_TGDHh0tMc?usp=sharing)