Unit 1 - Lunar PPO
Browse files- README.md +1 -1
- config.json +1 -1
- ppo_lunar_agent_2.zip +3 -0
- ppo_lunar_agent_2/_stable_baselines3_version +1 -0
- ppo_lunar_agent_2/data +92 -0
- ppo_lunar_agent_2/policy.optimizer.pth +3 -0
- ppo_lunar_agent_2/policy.pth +3 -0
- ppo_lunar_agent_2/pytorch_variables.pth +3 -0
- ppo_lunar_agent_2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 270.48 +/- 18.53
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9f4fa13940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9f4fa139d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9f4fa13a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9f4fa13af0>", "_build": "<function ActorCriticPolicy._build at 0x7f9f4fa13b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f9f4fa13c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9f4fa13ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9f4fa13d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9f4fa13dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9f4fa13e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9f4fa13ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9f4fa13f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9f4fa0f6f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677716989438667097, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACbzoD2Im6w9WJiOvX1YOL5RWCg8JldTvQAAAAAAAAAAetodPoPSAD9615i9wHlqvseXzDzafvm9AAAAAAAAAAAA3VK9RFs6P1GKCL3k5p++FfGmOpO+db0AAAAAAAAAAFoRwL7DGUw/c0G8PA/HQr4GxZa9ulu1OwAAAAAAAAAAM1/rPCnkHbpgrFW5sdI6tCUGd7uAvX44AACAPwAAgD+zv8A93FETvNSKrzz6aKM85KV3PQwbh70AAIA/AAAAAE2fwr32UEa6wtbWOo35UDY2M6A7/eD4uQAAgD8AAIA/CrqnPs9sWz/LwIu9PL2Tvh8VtT0y9/K9AAAAAAAAAABzVsS9SOeKup8zLrmJGBW0KSYtOs47STgAAAAAAACAP4CcYj0CcJY/MqsNPuqDWL6+M8E9j2YMPQAAAAAAAAAAACIFPRT0jrqOT6i47WqNs5dnQruWN8M3AACAPwAAgD/mgrK9KVBOurag6bqxjJ+2yBrQugfwDDoAAIA/AAAAAJrdrD0UfIK6KTyiOwQJITiuoEi71pyQtwAAAAAAAAAAOk0hvr5liD//mDo97LiOvhWAOr3KGkg9AAAAAAAAAADNsgq8pduyP/NTXL4SRja+3/aXOvBYU7wAAAAAAAAAAIBKJT0pNBm62+1LtTfkwbBbuim75BhCNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvjPaqiQ0YUCUhpRSlIwBbJRN6AOMAXSUR0Cl3c5LRKHxdX2UKGgGaAloD0MIborHRbVwNUCUhpRSlGgVTRABaBZHQKXeYFVT72t1fZQoaAZoCWgPQwhqiZXRyK5dQJSGlFKUaBVN6ANoFkdApd7Dkjopx3V9lChoBmgJaA9DCHgoCvSJKW5AlIaUUpRoFU2fAWgWR0Cl3xUHpr1vdX2UKGgGaAloD0MI/12fOevTA8CUhpRSlGgVS/5oFkdApd9DZDiOvXV9lChoBmgJaA9DCBcs1QU8zG5AlIaUUpRoFU1dAWgWR0Cl35uejEehdX2UKGgGaAloD0MIPpY+dEECbECUhpRSlGgVTVwBaBZHQKXf7HI6r/91fZQoaAZoCWgPQwiKARJNoDhhQJSGlFKUaBVN6ANoFkdApeBZavA443V9lChoBmgJaA9DCJ7PgHrzWnBAlIaUUpRoFU2CAWgWR0Cl4OyxzJZGdX2UKGgGaAloD0MIER5tHLGzbUCUhpRSlGgVTUoBaBZHQKXhHBgNPP91fZQoaAZoCWgPQwjQfw9euxJvQJSGlFKUaBVNnwFoFkdApeEr0+TvA3V9lChoBmgJaA9DCBnJHqHmDnFAlIaUUpRoFU1aAWgWR0Cl4TgvDgqFdX2UKGgGaAloD0MIHcnlPyQcckCUhpRSlGgVTXYBaBZHQKXhqBbwBo51fZQoaAZoCWgPQwhrC89LRVFwQJSGlFKUaBVNbgFoFkdApeLnNs3yZ3V9lChoBmgJaA9DCCGVYkfj9kdAlIaUUpRoFU0RAWgWR0Cl40NU4rBkdX2UKGgGaAloD0MIt2PqrmwnbUCUhpRSlGgVTWYBaBZHQKXjreuV5bB1fZQoaAZoCWgPQwh55XrbzIdrQJSGlFKUaBVNWAFoFkdApeUxwCKaX3V9lChoBmgJaA9DCOCEQgQcsWVAlIaUUpRoFU3oA2gWR0Cl5c6ya/h3dX2UKGgGaAloD0MIPulEgqn1bECUhpRSlGgVTVQBaBZHQKXl52ll9Sd1fZQoaAZoCWgPQwih2AqalhlyQJSGlFKUaBVNdgFoFkdApeb9xn3+M3V9lChoBmgJaA9DCK6bUl6rwG1AlIaUUpRoFU14AWgWR0Cl5+Z6MR6GdX2UKGgGaAloD0MIdLSqJZ3ucUCUhpRSlGgVTcQBaBZHQKXn/iLl3hZ1fZQoaAZoCWgPQwig4c0aPIpwQJSGlFKUaBVNYAFoFkdApehDgAIY33V9lChoBmgJaA9DCArWOJuOwW9AlIaUUpRoFU2fAWgWR0Cl6E9Net0WdX2UKGgGaAloD0MIDTm2nmEScUCUhpRSlGgVTY8BaBZHQKXpQavzOHF1fZQoaAZoCWgPQwhQcLGihqtsQJSGlFKUaBVNhgFoFkdApel3Zdv863V9lChoBmgJaA9DCBqGj4gp92lAlIaUUpRoFU2XAWgWR0Cl6cv5pJwsdX2UKGgGaAloD0MIU5J1ODoEcECUhpRSlGgVTZwBaBZHQKXtgxQBPsR1fZQoaAZoCWgPQwhzSkBMwsFuQJSGlFKUaBVNkgFoFkdApe6ejynUD3V9lChoBmgJaA9DCEp/L4WHPHFAlIaUUpRoFU1JAWgWR0Cl76ajesPrdX2UKGgGaAloD0MIZvUOt8OIcUCUhpRSlGgVTagBaBZHQKX8YDoQnQZ1fZQoaAZoCWgPQwjggJauYBhuQJSGlFKUaBVNigFoFkdApfxwnc+JQHV9lChoBmgJaA9DCPn2rkHfKHFAlIaUUpRoFU1GAWgWR0Cl/X+melKsdX2UKGgGaAloD0MIwygIHl9Ob0CUhpRSlGgVTVwBaBZHQKX9nG3nZCh1fZQoaAZoCWgPQwihL739Oa9wQJSGlFKUaBVNbwFoFkdApf6RLK3d9HV9lChoBmgJaA9DCDCDMSLR325AlIaUUpRoFU2FAWgWR0Cl/tgDA8B/dX2UKGgGaAloD0MIyTuHMlRjbUCUhpRSlGgVTYcBaBZHQKYAjBk7Oml1fZQoaAZoCWgPQwgav/BKkoddQJSGlFKUaBVN6ANoFkdApgNtRaX8fnV9lChoBmgJaA9DCKVOQBPhcHBAlIaUUpRoFU0DAmgWR0CmA3Z4fOlgdX2UKGgGaAloD0MIUYNpGD6Kb0CUhpRSlGgVTXgBaBZHQKYD+KG+K0l1fZQoaAZoCWgPQwiyKy0jdQJrQJSGlFKUaBVNOgJoFkdApgT5nDiwS3V9lChoBmgJaA9DCGEW2jmNu3BAlIaUUpRoFU1FAWgWR0CmBRoFmnO0dX2UKGgGaAloD0MI2SWqtwZ1b0CUhpRSlGgVTVsBaBZHQKYFlXPJJXh1fZQoaAZoCWgPQwgVGohlM28vQJSGlFKUaBVNFQFoFkdApgX+0b961XV9lChoBmgJaA9DCKjfha3Z22BAlIaUUpRoFU3oA2gWR0CmBojdxhlUdX2UKGgGaAloD0MIIc7DCcx3bUCUhpRSlGgVTXABaBZHQKYHCyjYZl51fZQoaAZoCWgPQwirWWd8Hw9wQJSGlFKUaBVNAgNoFkdApgepp1zQu3V9lChoBmgJaA9DCAc/cQD9z2tAlIaUUpRoFU2YAWgWR0CmCGJ9ZzPsdX2UKGgGaAloD0MISs6JPTSDb0CUhpRSlGgVTXsBaBZHQKYIkHu7YkF1fZQoaAZoCWgPQwgA4UOJFhBkQJSGlFKUaBVN6ANoFkdApglIBeXzDnV9lChoBmgJaA9DCIAsRIdA4W9AlIaUUpRoFU2lAWgWR0CmDDf7aZhKdX2UKGgGaAloD0MIXDtREpIncECUhpRSlGgVTUsBaBZHQKYMx9kSVW11fZQoaAZoCWgPQwhvuI/c2gJwQJSGlFKUaBVNdAFoFkdApg5Ig9vCM3V9lChoBmgJaA9DCGnjiLX4NXBAlIaUUpRoFU2YAWgWR0CmEiD6nBLxdX2UKGgGaAloD0MI598u+3WpcECUhpRSlGgVTXUBaBZHQKYSN+S8rZt1fZQoaAZoCWgPQwiBIECGjvJtQJSGlFKUaBVNdQFoFkdAphLlzS1E3XV9lChoBmgJaA9DCBDpt69Dv3FAlIaUUpRoFU1UAWgWR0CmEwdvjwQUdX2UKGgGaAloD0MIyQG7mjzhb0CUhpRSlGgVTVYBaBZHQKYTswxFiKB1fZQoaAZoCWgPQwg1071Oak1tQJSGlFKUaBVNhAFoFkdAphUguRLbpXV9lChoBmgJaA9DCGuad5ziWXBAlIaUUpRoFU2JAWgWR0CmFe5VGTcJdX2UKGgGaAloD0MIuhRXlf0NZkCUhpRSlGgVTegDaBZHQKYV7vOyE+R1fZQoaAZoCWgPQwiUopV7AUluQJSGlFKUaBVNQQFoFkdAphZwJeE7GXV9lChoBmgJaA9DCCMVxhYCoG5AlIaUUpRoFU1HAmgWR0CmFqC5NGmUdX2UKGgGaAloD0MI3smnx7YtY0CUhpRSlGgVTegDaBZHQKYXO9bHIZJ1fZQoaAZoCWgPQwhZpfRML2FuQJSGlFKUaBVNTAFoFkdAphffdbgTAXV9lChoBmgJaA9DCPGfbqAAnHBAlIaUUpRoFU3NAWgWR0CmI7VR+BpYdX2UKGgGaAloD0MILZPheD4ocECUhpRSlGgVTYgBaBZHQKYmIjMV1wJ1fZQoaAZoCWgPQwjVCP1MPZZwQJSGlFKUaBVNegFoFkdApia9nscABHV9lChoBmgJaA9DCD6Skh6GcEdAlIaUUpRoFUv9aBZHQKYnUPwuuih1fZQoaAZoCWgPQwgIOlrV0q5xQJSGlFKUaBVNjwFoFkdApidwjMV1wHV9lChoBmgJaA9DCGMpkq+EqmxAlIaUUpRoFU21AWgWR0CmJ9m16Vt5dX2UKGgGaAloD0MIVIzzNyE/bUCUhpRSlGgVTYABaBZHQKYoCC8OCoV1fZQoaAZoCWgPQwhyv0NRoP9wQJSGlFKUaBVNjANoFkdApihvFFUhm3V9lChoBmgJaA9DCPt46LvbuGxAlIaUUpRoFU1jAWgWR0CmKMHmaH9FdX2UKGgGaAloD0MI+WpHcY4ea0CUhpRSlGgVTVIBaBZHQKYpLZ7HAAR1fZQoaAZoCWgPQwjLn28LFoNtQJSGlFKUaBVNhgFoFkdApiq+X3QD3nV9lChoBmgJaA9DCOMXXklyfG9AlIaUUpRoFU1xAWgWR0CmKr7ngYP5dX2UKGgGaAloD0MI5zqNtNRhbECUhpRSlGgVTW8BaBZHQKYs2606YE51fZQoaAZoCWgPQwh2jZYDPWxgQJSGlFKUaBVN6ANoFkdApi1eh24d63V9lChoBmgJaA9DCC47xD/sdWVAlIaUUpRoFU3oA2gWR0CmL1PWpZOjdX2UKGgGaAloD0MIxt6LLxpEcECUhpRSlGgVTYoBaBZHQKYwY4lQdjp1fZQoaAZoCWgPQwgp6PaSxhRuQJSGlFKUaBVNZwFoFkdApjF1uJk5InV9lChoBmgJaA9DCBFSt7MvhnBAlIaUUpRoFU1kAWgWR0CmMcJZGKAKdX2UKGgGaAloD0MI8iVUcLgjcECUhpRSlGgVTXIBaBZHQKYzOC4jKPp1fZQoaAZoCWgPQwiiQQqegi1wQJSGlFKUaBVNrwFoFkdApjRetZFG5XV9lChoBmgJaA9DCJUrvMtF52xAlIaUUpRoFU3AAWgWR0CmNc9tl7MQdX2UKGgGaAloD0MIxyqlZ3qZQECUhpRSlGgVTUoBaBZHQKY11s2NvO11fZQoaAZoCWgPQwj0+L1N/9xwQJSGlFKUaBVNlwFoFkdApjYVG/etS3V9lChoBmgJaA9DCBFvnX+7NnJAlIaUUpRoFU3fAWgWR0CmNjtzr/sFdX2UKGgGaAloD0MIxw4qcd13ckCUhpRSlGgVTa0BaBZHQKY2iV9F4LV1fZQoaAZoCWgPQwgOar+1E4tyQJSGlFKUaBVNWwFoFkdApjaKBGx2S3V9lChoBmgJaA9DCAwEATL0dW9AlIaUUpRoFU1lAWgWR0CmN/vCl7+ldX2UKGgGaAloD0MItkdvuE9NcUCUhpRSlGgVTWABaBZHQKY4tlLeyiV1fZQoaAZoCWgPQwj+mxcnfgFyQJSGlFKUaBVNjQFoFkdApjsiVjZtenV9lChoBmgJaA9DCENYjSUstGxAlIaUUpRoFU1mAWgWR0CmO62rn1WbdX2UKGgGaAloD0MIl3K+2PuAa0CUhpRSlGgVTbABaBZHQKY7xNnGsFN1fZQoaAZoCWgPQwgC1NSyNc9kQJSGlFKUaBVN6ANoFkdApjwOACnxa3V9lChoBmgJaA9DCJfHmpHBkG5AlIaUUpRoFU1iAWgWR0CmPJgOjIq9dX2UKGgGaAloD0MIOiS1ULLucUCUhpRSlGgVTVkBaBZHQKY9vrWRRuV1fZQoaAZoCWgPQwgdWmQ7HxZwQJSGlFKUaBVNXgFoFkdApj6eoWHk93VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa4a1713550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa4a17135e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa4a1713670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa4a1713700>", "_build": "<function ActorCriticPolicy._build at 0x7fa4a1713790>", "forward": "<function ActorCriticPolicy.forward at 0x7fa4a1713820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa4a17138b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa4a1713940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa4a17139d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa4a1713a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa4a1713af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa4a1713b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa4a170f750>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2031616, "_total_timesteps": 2015808, "_num_timesteps_at_start": 1015808, "seed": null, "action_noise": null, "start_time": 1677720265014844357, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007842016700003285, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVVBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYRiw5KqJcUCUhpRSlIwBbJRL/4wBdJRHQJAMUptrKvF1fZQoaAZoCWgPQwjlYgyso91xQJSGlFKUaBVL92gWR0CQDMT1CgK4dX2UKGgGaAloD0MIy9dl+E+kUUCUhpRSlGgVS7JoFkdAkAzV7Y02tXV9lChoBmgJaA9DCLk2VIwzlHBAlIaUUpRoFU0QAWgWR0CQDPa4MF2WdX2UKGgGaAloD0MISBXFqyzSbUCUhpRSlGgVTQoBaBZHQJANYcfeUIN1fZQoaAZoCWgPQwiVYHE4swVwQJSGlFKUaBVNGgFoFkdAkA3hhQWN3nV9lChoBmgJaA9DCPYoXI/CUXFAlIaUUpRoFU0MAWgWR0CQDfnbItDldX2UKGgGaAloD0MIzxQ6r/HAcECUhpRSlGgVS/BoFkdAkA5/Yao/A3V9lChoBmgJaA9DCNE/wcVK83FAlIaUUpRoFUvqaBZHQJAOy5paibl1fZQoaAZoCWgPQwhxrIvb6GFvQJSGlFKUaBVNDgFoFkdAkA7bIDHOr3V9lChoBmgJaA9DCI1BJ4TODnFAlIaUUpRoFU0SAWgWR0CQDw34bjtHdX2UKGgGaAloD0MIsd6oFeYrc0CUhpRSlGgVTQIBaBZHQJAPDkeZG8V1fZQoaAZoCWgPQwjRrdf0YEVzQJSGlFKUaBVNIAFoFkdAkBF+lXRw63V9lChoBmgJaA9DCOHs1jLZ/3FAlIaUUpRoFU0eAWgWR0CQEYuHvc8DdX2UKGgGaAloD0MI0765vzodckCUhpRSlGgVTQgBaBZHQJARxhd+ocd1fZQoaAZoCWgPQwgmqrcGNkVtQJSGlFKUaBVL+2gWR0CQEfdld1MedX2UKGgGaAloD0MI/reSHRtdckCUhpRSlGgVS/toFkdAkBNq/qPfbnV9lChoBmgJaA9DCJUnEHbKG3NAlIaUUpRoFU0KAWgWR0CQE8/NJOFhdX2UKGgGaAloD0MIPZ6WH7hpckCUhpRSlGgVS+doFkdAkBP4kJKJ23V9lChoBmgJaA9DCKUw73GmUnNAlIaUUpRoFU0cAWgWR0CQE/Hfdhy9dX2UKGgGaAloD0MIxR9FnTlxcUCUhpRSlGgVTRcBaBZHQJAUYaLn9vV1fZQoaAZoCWgPQwjS30vhgf1wQJSGlFKUaBVNFQFoFkdAkBS5UPxx1nV9lChoBmgJaA9DCDv7yoN0RnJAlIaUUpRoFUv1aBZHQJAVZQfp2U11fZQoaAZoCWgPQwgn3gGeNCFwQJSGlFKUaBVNBwFoFkdAkBWEwaisXHV9lChoBmgJaA9DCJdXrrdN2nBAlIaUUpRoFUv8aBZHQJAVg7yQPqd1fZQoaAZoCWgPQwhzEHS0qltxQJSGlFKUaBVNLgFoFkdAkBXxkmQbM3V9lChoBmgJaA9DCAX7r3OThXFAlIaUUpRoFU0lAWgWR0CQFrfE4vOAdX2UKGgGaAloD0MIc56xL1lccUCUhpRSlGgVTSgBaBZHQJAWyZAprk91fZQoaAZoCWgPQwgQXOUJhNpyQJSGlFKUaBVL62gWR0CQF/qRlpXZdX2UKGgGaAloD0MIWW3+X/XCb0CUhpRSlGgVS/JoFkdAkBhT2JzkqHV9lChoBmgJaA9DCPfI5qp5knJAlIaUUpRoFU0FAWgWR0CQGG77bcoIdX2UKGgGaAloD0MIxVVl39XyckCUhpRSlGgVTRkBaBZHQJAY4gow22p1fZQoaAZoCWgPQwg+BFWj18lyQJSGlFKUaBVL+2gWR0CQGhWpIczZdX2UKGgGaAloD0MIwW9DjNdyQUCUhpRSlGgVS9BoFkdAkBouchC+lHV9lChoBmgJaA9DCH/AAwMIRW9AlIaUUpRoFUv1aBZHQJAaYOG0u151fZQoaAZoCWgPQwhQ4nMn2CNzQJSGlFKUaBVL+GgWR0CQGrC79Q40dX2UKGgGaAloD0MIJNBgU2fNcECUhpRSlGgVTQ4BaBZHQJAbfymQ8wJ1fZQoaAZoCWgPQwgn9WVp5xtyQJSGlFKUaBVNIQFoFkdAkDZRGhEjPnV9lChoBmgJaA9DCD5eSIcHgG9AlIaUUpRoFUvpaBZHQJA2ctNBWxR1fZQoaAZoCWgPQwhGlPYG3w9vQJSGlFKUaBVNCgFoFkdAkDbTu4PPLXV9lChoBmgJaA9DCCbkg56NMHBAlIaUUpRoFU0UAWgWR0CQNvmEGqxUdX2UKGgGaAloD0MIvvc3aC91cUCUhpRSlGgVTR4BaBZHQJA3Wy0KJEZ1fZQoaAZoCWgPQwigF+5cWF9wQJSGlFKUaBVL82gWR0CQN6NvwVj7dX2UKGgGaAloD0MIyLYMOEvbRkCUhpRSlGgVS9BoFkdAkDhkqYqoZXV9lChoBmgJaA9DCPc8f9ooGnBAlIaUUpRoFU0VAWgWR0CQOHrDZUT+dX2UKGgGaAloD0MIVtKKbyjycECUhpRSlGgVTQgBaBZHQJA5h0OmR/51fZQoaAZoCWgPQwjrAfOQKahwQJSGlFKUaBVL+GgWR0CQOZbsniNsdX2UKGgGaAloD0MIhiAHJYwCcUCUhpRSlGgVTQMBaBZHQJA6W3gDRtx1fZQoaAZoCWgPQwjb4ET0a2FxQJSGlFKUaBVL+2gWR0CQOy8EFGG3dX2UKGgGaAloD0MIZcIv9bO5cECUhpRSlGgVS/xoFkdAkDtHKr7wa3V9lChoBmgJaA9DCFfMCG8POm1AlIaUUpRoFU0IAWgWR0CQO/lSCOFQdX2UKGgGaAloD0MI1ESfj/LxcECUhpRSlGgVS/JoFkdAkDvyNbTts3V9lChoBmgJaA9DCG4VxECX5XFAlIaUUpRoFU0XAWgWR0CQPC0zTF2ndX2UKGgGaAloD0MIwARu3c3wckCUhpRSlGgVS/1oFkdAkD0hR64Ue3V9lChoBmgJaA9DCLeWyXA843JAlIaUUpRoFU0QAWgWR0CQPcxmTTvzdX2UKGgGaAloD0MIc6Hyr2Vkb0CUhpRSlGgVTQMBaBZHQJA9/zqbBoF1fZQoaAZoCWgPQwh9PPTdbdpyQJSGlFKUaBVL92gWR0CQPhHjp9qldX2UKGgGaAloD0MIhPV/DjNYckCUhpRSlGgVTRQBaBZHQJA+S/dqL0l1fZQoaAZoCWgPQwhjQzf7AypwQJSGlFKUaBVNBgFoFkdAkD64BeXzDnV9lChoBmgJaA9DCB2rlJ6pF3FAlIaUUpRoFUvyaBZHQJA+6M4tHx11fZQoaAZoCWgPQwggf2lRHz1vQJSGlFKUaBVNFgFoFkdAkD/oEOiFkHV9lChoBmgJaA9DCGKBr+hWZ21AlIaUUpRoFUv9aBZHQJBAWc5Ke051fZQoaAZoCWgPQwjMs5JW/AttQJSGlFKUaBVNDAFoFkdAkECxD9fkWHV9lChoBmgJaA9DCNmwprJoX3NAlIaUUpRoFUvzaBZHQJBBsd6sySF1fZQoaAZoCWgPQwj6uDZUzF9wQJSGlFKUaBVNFwFoFkdAkEHnGXHBDXV9lChoBmgJaA9DCP2gLlKohG9AlIaUUpRoFUv4aBZHQJBCiu/1xsF1fZQoaAZoCWgPQwgfgqrRa8ByQJSGlFKUaBVNGQFoFkdAkELKOPvKEHV9lChoBmgJaA9DCLTKTGm9qXJAlIaUUpRoFU0bAWgWR0CQQ7loDgZTdX2UKGgGaAloD0MILxaGyCnjckCUhpRSlGgVTSsBaBZHQJBD/CSA6Ml1fZQoaAZoCWgPQwg2H9eGijBRQJSGlFKUaBVLvGgWR0CQRAlv60pmdX2UKGgGaAloD0MI9FFGXIDOcUCUhpRSlGgVS/RoFkdAkESNxlxwQ3V9lChoBmgJaA9DCBE2PL1SoW5AlIaUUpRoFUv9aBZHQJBEndAPd2x1fZQoaAZoCWgPQwjeOZShKuZxQJSGlFKUaBVL+WgWR0CQRPwh4dIYdX2UKGgGaAloD0MIGv1oOGWdcECUhpRSlGgVTS0BaBZHQJBFQMI/qxF1fZQoaAZoCWgPQwidoE0On4ZUQJSGlFKUaBVLtGgWR0CQRUvcafjCdX2UKGgGaAloD0MIg8DKocUDckCUhpRSlGgVTRYBaBZHQJBFf2/SH/N1fZQoaAZoCWgPQwj8FwgCZEFuQJSGlFKUaBVL/2gWR0CQR7mGM4tIdX2UKGgGaAloD0MIqfsApDakcECUhpRSlGgVTS0BaBZHQJBIULH+6y11fZQoaAZoCWgPQwidnndjgRpyQJSGlFKUaBVNXQFoFkdAkEhZh8Yyf3V9lChoBmgJaA9DCK98lucBCHNAlIaUUpRoFU0DAWgWR0CQSO7BfrrxdX2UKGgGaAloD0MI3XwjuqdzcUCUhpRSlGgVTRIBaBZHQJBJlLzwtrd1fZQoaAZoCWgPQwg2BMdlHGxwQJSGlFKUaBVL+GgWR0CQSYySmqHXdX2UKGgGaAloD0MIFLTJ4VODckCUhpRSlGgVS+poFkdAkEpasp5NXnV9lChoBmgJaA9DCMkiTbwDWHFAlIaUUpRoFU0PAWgWR0CQSnHCGetkdX2UKGgGaAloD0MIILjKEwgYcUCUhpRSlGgVS+ZoFkdAkEp/UjLSu3V9lChoBmgJaA9DCCsv+Z98Fm9AlIaUUpRoFU0BAWgWR0CQSzRO1v2odX2UKGgGaAloD0MI0zHnGTsScUCUhpRSlGgVS/9oFkdAkEuwqd6LO3V9lChoBmgJaA9DCHf3AN2XQnFAlIaUUpRoFUv1aBZHQJBLzrVvuPV1fZQoaAZoCWgPQwi3J0hst+JwQJSGlFKUaBVNEwFoFkdAkEwv1DjR2XV9lChoBmgJaA9DCP9YiA4B+W1AlIaUUpRoFU0LAWgWR0CQTK/95yEMdX2UKGgGaAloD0MID7dDw+JfckCUhpRSlGgVTRcBaBZHQJBNMEt/WlN1fZQoaAZoCWgPQwhW9fI7TW4+QJSGlFKUaBVLi2gWR0CQTS1KGtZFdX2UKGgGaAloD0MICkrRyv16cECUhpRSlGgVTTABaBZHQJBNkMVk+X91fZQoaAZoCWgPQwiU3je+9vxLQJSGlFKUaBVL02gWR0CQTeVh1DBudX2UKGgGaAloD0MILUKxFXS2cECUhpRSlGgVS/toFkdAkE7qDwpe/3V9lChoBmgJaA9DCMnIWdhTmnBAlIaUUpRoFU0VAWgWR0CQTyvqTr3TdX2UKGgGaAloD0MIoWgewGIicUCUhpRSlGgVTQIBaBZHQJBPtVea8Yh1fZQoaAZoCWgPQwjI0/IDV3hwQJSGlFKUaBVL8GgWR0CQUMZSvTw2dX2UKGgGaAloD0MIXTKOkeybb0CUhpRSlGgVS/RoFkdAkFDxz3h4uHV9lChoBmgJaA9DCLg81ozMXXBAlIaUUpRoFU0XAWgWR0CQUQKHfuTidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 528, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo_lunar_agent_2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7daddb6aebe858b9c8e1d864f0c74d59bfb5c43a17013e13c8899bef78920cea
|
3 |
+
size 146567
|
ppo_lunar_agent_2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo_lunar_agent_2/data
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa4a1713550>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa4a17135e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa4a1713670>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa4a1713700>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa4a1713790>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa4a1713820>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa4a17138b0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa4a1713940>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa4a17139d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa4a1713a60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa4a1713af0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa4a1713b80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fa4a170f750>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 2031616,
|
47 |
+
"_total_timesteps": 2015808,
|
48 |
+
"_num_timesteps_at_start": 1015808,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677720265014844357,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": null,
|
59 |
+
"_last_episode_starts": {
|
60 |
+
":type:": "<class 'numpy.ndarray'>",
|
61 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
62 |
+
},
|
63 |
+
"_last_original_obs": null,
|
64 |
+
"_episode_num": 0,
|
65 |
+
"use_sde": false,
|
66 |
+
"sde_sample_freq": -1,
|
67 |
+
"_current_progress_remaining": -0.007842016700003285,
|
68 |
+
"ep_info_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVVBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYRiw5KqJcUCUhpRSlIwBbJRL/4wBdJRHQJAMUptrKvF1fZQoaAZoCWgPQwjlYgyso91xQJSGlFKUaBVL92gWR0CQDMT1CgK4dX2UKGgGaAloD0MIy9dl+E+kUUCUhpRSlGgVS7JoFkdAkAzV7Y02tXV9lChoBmgJaA9DCLk2VIwzlHBAlIaUUpRoFU0QAWgWR0CQDPa4MF2WdX2UKGgGaAloD0MISBXFqyzSbUCUhpRSlGgVTQoBaBZHQJANYcfeUIN1fZQoaAZoCWgPQwiVYHE4swVwQJSGlFKUaBVNGgFoFkdAkA3hhQWN3nV9lChoBmgJaA9DCPYoXI/CUXFAlIaUUpRoFU0MAWgWR0CQDfnbItDldX2UKGgGaAloD0MIzxQ6r/HAcECUhpRSlGgVS/BoFkdAkA5/Yao/A3V9lChoBmgJaA9DCNE/wcVK83FAlIaUUpRoFUvqaBZHQJAOy5paibl1fZQoaAZoCWgPQwhxrIvb6GFvQJSGlFKUaBVNDgFoFkdAkA7bIDHOr3V9lChoBmgJaA9DCI1BJ4TODnFAlIaUUpRoFU0SAWgWR0CQDw34bjtHdX2UKGgGaAloD0MIsd6oFeYrc0CUhpRSlGgVTQIBaBZHQJAPDkeZG8V1fZQoaAZoCWgPQwjRrdf0YEVzQJSGlFKUaBVNIAFoFkdAkBF+lXRw63V9lChoBmgJaA9DCOHs1jLZ/3FAlIaUUpRoFU0eAWgWR0CQEYuHvc8DdX2UKGgGaAloD0MI0765vzodckCUhpRSlGgVTQgBaBZHQJARxhd+ocd1fZQoaAZoCWgPQwgmqrcGNkVtQJSGlFKUaBVL+2gWR0CQEfdld1MedX2UKGgGaAloD0MI/reSHRtdckCUhpRSlGgVS/toFkdAkBNq/qPfbnV9lChoBmgJaA9DCJUnEHbKG3NAlIaUUpRoFU0KAWgWR0CQE8/NJOFhdX2UKGgGaAloD0MIPZ6WH7hpckCUhpRSlGgVS+doFkdAkBP4kJKJ23V9lChoBmgJaA9DCKUw73GmUnNAlIaUUpRoFU0cAWgWR0CQE/Hfdhy9dX2UKGgGaAloD0MIxR9FnTlxcUCUhpRSlGgVTRcBaBZHQJAUYaLn9vV1fZQoaAZoCWgPQwjS30vhgf1wQJSGlFKUaBVNFQFoFkdAkBS5UPxx1nV9lChoBmgJaA9DCDv7yoN0RnJAlIaUUpRoFUv1aBZHQJAVZQfp2U11fZQoaAZoCWgPQwgn3gGeNCFwQJSGlFKUaBVNBwFoFkdAkBWEwaisXHV9lChoBmgJaA9DCJdXrrdN2nBAlIaUUpRoFUv8aBZHQJAVg7yQPqd1fZQoaAZoCWgPQwhzEHS0qltxQJSGlFKUaBVNLgFoFkdAkBXxkmQbM3V9lChoBmgJaA9DCAX7r3OThXFAlIaUUpRoFU0lAWgWR0CQFrfE4vOAdX2UKGgGaAloD0MIc56xL1lccUCUhpRSlGgVTSgBaBZHQJAWyZAprk91fZQoaAZoCWgPQwgQXOUJhNpyQJSGlFKUaBVL62gWR0CQF/qRlpXZdX2UKGgGaAloD0MIWW3+X/XCb0CUhpRSlGgVS/JoFkdAkBhT2JzkqHV9lChoBmgJaA9DCPfI5qp5knJAlIaUUpRoFU0FAWgWR0CQGG77bcoIdX2UKGgGaAloD0MIxVVl39XyckCUhpRSlGgVTRkBaBZHQJAY4gow22p1fZQoaAZoCWgPQwg+BFWj18lyQJSGlFKUaBVL+2gWR0CQGhWpIczZdX2UKGgGaAloD0MIwW9DjNdyQUCUhpRSlGgVS9BoFkdAkBouchC+lHV9lChoBmgJaA9DCH/AAwMIRW9AlIaUUpRoFUv1aBZHQJAaYOG0u151fZQoaAZoCWgPQwhQ4nMn2CNzQJSGlFKUaBVL+GgWR0CQGrC79Q40dX2UKGgGaAloD0MIJNBgU2fNcECUhpRSlGgVTQ4BaBZHQJAbfymQ8wJ1fZQoaAZoCWgPQwgn9WVp5xtyQJSGlFKUaBVNIQFoFkdAkDZRGhEjPnV9lChoBmgJaA9DCD5eSIcHgG9AlIaUUpRoFUvpaBZHQJA2ctNBWxR1fZQoaAZoCWgPQwhGlPYG3w9vQJSGlFKUaBVNCgFoFkdAkDbTu4PPLXV9lChoBmgJaA9DCCbkg56NMHBAlIaUUpRoFU0UAWgWR0CQNvmEGqxUdX2UKGgGaAloD0MIvvc3aC91cUCUhpRSlGgVTR4BaBZHQJA3Wy0KJEZ1fZQoaAZoCWgPQwigF+5cWF9wQJSGlFKUaBVL82gWR0CQN6NvwVj7dX2UKGgGaAloD0MIyLYMOEvbRkCUhpRSlGgVS9BoFkdAkDhkqYqoZXV9lChoBmgJaA9DCPc8f9ooGnBAlIaUUpRoFU0VAWgWR0CQOHrDZUT+dX2UKGgGaAloD0MIVtKKbyjycECUhpRSlGgVTQgBaBZHQJA5h0OmR/51fZQoaAZoCWgPQwjrAfOQKahwQJSGlFKUaBVL+GgWR0CQOZbsniNsdX2UKGgGaAloD0MIhiAHJYwCcUCUhpRSlGgVTQMBaBZHQJA6W3gDRtx1fZQoaAZoCWgPQwjb4ET0a2FxQJSGlFKUaBVL+2gWR0CQOy8EFGG3dX2UKGgGaAloD0MIZcIv9bO5cECUhpRSlGgVS/xoFkdAkDtHKr7wa3V9lChoBmgJaA9DCFfMCG8POm1AlIaUUpRoFU0IAWgWR0CQO/lSCOFQdX2UKGgGaAloD0MI1ESfj/LxcECUhpRSlGgVS/JoFkdAkDvyNbTts3V9lChoBmgJaA9DCG4VxECX5XFAlIaUUpRoFU0XAWgWR0CQPC0zTF2ndX2UKGgGaAloD0MIwARu3c3wckCUhpRSlGgVS/1oFkdAkD0hR64Ue3V9lChoBmgJaA9DCLeWyXA843JAlIaUUpRoFU0QAWgWR0CQPcxmTTvzdX2UKGgGaAloD0MIc6Hyr2Vkb0CUhpRSlGgVTQMBaBZHQJA9/zqbBoF1fZQoaAZoCWgPQwh9PPTdbdpyQJSGlFKUaBVL92gWR0CQPhHjp9qldX2UKGgGaAloD0MIhPV/DjNYckCUhpRSlGgVTRQBaBZHQJA+S/dqL0l1fZQoaAZoCWgPQwhjQzf7AypwQJSGlFKUaBVNBgFoFkdAkD64BeXzDnV9lChoBmgJaA9DCB2rlJ6pF3FAlIaUUpRoFUvyaBZHQJA+6M4tHx11fZQoaAZoCWgPQwggf2lRHz1vQJSGlFKUaBVNFgFoFkdAkD/oEOiFkHV9lChoBmgJaA9DCGKBr+hWZ21AlIaUUpRoFUv9aBZHQJBAWc5Ke051fZQoaAZoCWgPQwjMs5JW/AttQJSGlFKUaBVNDAFoFkdAkECxD9fkWHV9lChoBmgJaA9DCNmwprJoX3NAlIaUUpRoFUvzaBZHQJBBsd6sySF1fZQoaAZoCWgPQwj6uDZUzF9wQJSGlFKUaBVNFwFoFkdAkEHnGXHBDXV9lChoBmgJaA9DCP2gLlKohG9AlIaUUpRoFUv4aBZHQJBCiu/1xsF1fZQoaAZoCWgPQwgfgqrRa8ByQJSGlFKUaBVNGQFoFkdAkELKOPvKEHV9lChoBmgJaA9DCLTKTGm9qXJAlIaUUpRoFU0bAWgWR0CQQ7loDgZTdX2UKGgGaAloD0MILxaGyCnjckCUhpRSlGgVTSsBaBZHQJBD/CSA6Ml1fZQoaAZoCWgPQwg2H9eGijBRQJSGlFKUaBVLvGgWR0CQRAlv60pmdX2UKGgGaAloD0MI9FFGXIDOcUCUhpRSlGgVS/RoFkdAkESNxlxwQ3V9lChoBmgJaA9DCBE2PL1SoW5AlIaUUpRoFUv9aBZHQJBEndAPd2x1fZQoaAZoCWgPQwjeOZShKuZxQJSGlFKUaBVL+WgWR0CQRPwh4dIYdX2UKGgGaAloD0MIGv1oOGWdcECUhpRSlGgVTS0BaBZHQJBFQMI/qxF1fZQoaAZoCWgPQwidoE0On4ZUQJSGlFKUaBVLtGgWR0CQRUvcafjCdX2UKGgGaAloD0MIg8DKocUDckCUhpRSlGgVTRYBaBZHQJBFf2/SH/N1fZQoaAZoCWgPQwj8FwgCZEFuQJSGlFKUaBVL/2gWR0CQR7mGM4tIdX2UKGgGaAloD0MIqfsApDakcECUhpRSlGgVTS0BaBZHQJBIULH+6y11fZQoaAZoCWgPQwidnndjgRpyQJSGlFKUaBVNXQFoFkdAkEhZh8Yyf3V9lChoBmgJaA9DCK98lucBCHNAlIaUUpRoFU0DAWgWR0CQSO7BfrrxdX2UKGgGaAloD0MI3XwjuqdzcUCUhpRSlGgVTRIBaBZHQJBJlLzwtrd1fZQoaAZoCWgPQwg2BMdlHGxwQJSGlFKUaBVL+GgWR0CQSYySmqHXdX2UKGgGaAloD0MIFLTJ4VODckCUhpRSlGgVS+poFkdAkEpasp5NXnV9lChoBmgJaA9DCMkiTbwDWHFAlIaUUpRoFU0PAWgWR0CQSnHCGetkdX2UKGgGaAloD0MIILjKEwgYcUCUhpRSlGgVS+ZoFkdAkEp/UjLSu3V9lChoBmgJaA9DCCsv+Z98Fm9AlIaUUpRoFU0BAWgWR0CQSzRO1v2odX2UKGgGaAloD0MI0zHnGTsScUCUhpRSlGgVS/9oFkdAkEuwqd6LO3V9lChoBmgJaA9DCHf3AN2XQnFAlIaUUpRoFUv1aBZHQJBLzrVvuPV1fZQoaAZoCWgPQwi3J0hst+JwQJSGlFKUaBVNEwFoFkdAkEwv1DjR2XV9lChoBmgJaA9DCP9YiA4B+W1AlIaUUpRoFU0LAWgWR0CQTK/95yEMdX2UKGgGaAloD0MID7dDw+JfckCUhpRSlGgVTRcBaBZHQJBNMEt/WlN1fZQoaAZoCWgPQwhW9fI7TW4+QJSGlFKUaBVLi2gWR0CQTS1KGtZFdX2UKGgGaAloD0MICkrRyv16cECUhpRSlGgVTTABaBZHQJBNkMVk+X91fZQoaAZoCWgPQwiU3je+9vxLQJSGlFKUaBVL02gWR0CQTeVh1DBudX2UKGgGaAloD0MILUKxFXS2cECUhpRSlGgVS/toFkdAkE7qDwpe/3V9lChoBmgJaA9DCMnIWdhTmnBAlIaUUpRoFU0VAWgWR0CQTyvqTr3TdX2UKGgGaAloD0MIoWgewGIicUCUhpRSlGgVTQIBaBZHQJBPtVea8Yh1fZQoaAZoCWgPQwjI0/IDV3hwQJSGlFKUaBVL8GgWR0CQUMZSvTw2dX2UKGgGaAloD0MIXTKOkeybb0CUhpRSlGgVS/RoFkdAkFDxz3h4uHV9lChoBmgJaA9DCLg81ozMXXBAlIaUUpRoFU0XAWgWR0CQUQKHfuTidWUu"
|
71 |
+
},
|
72 |
+
"ep_success_buffer": {
|
73 |
+
":type:": "<class 'collections.deque'>",
|
74 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
75 |
+
},
|
76 |
+
"_n_updates": 528,
|
77 |
+
"n_steps": 1024,
|
78 |
+
"gamma": 0.999,
|
79 |
+
"gae_lambda": 0.98,
|
80 |
+
"ent_coef": 0.01,
|
81 |
+
"vf_coef": 0.5,
|
82 |
+
"max_grad_norm": 0.5,
|
83 |
+
"batch_size": 64,
|
84 |
+
"n_epochs": 4,
|
85 |
+
"clip_range": {
|
86 |
+
":type:": "<class 'function'>",
|
87 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
88 |
+
},
|
89 |
+
"clip_range_vf": null,
|
90 |
+
"normalize_advantage": true,
|
91 |
+
"target_kl": null
|
92 |
+
}
|
ppo_lunar_agent_2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c31461a359ad5c658996201dcf0e0645a46520964b73fb42fd798d7b0fa100d
|
3 |
+
size 88057
|
ppo_lunar_agent_2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb25db963591a770fcb55d4d4965d0f8a405880abe4908b9e9b0a9424914a09f
|
3 |
+
size 43393
|
ppo_lunar_agent_2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunar_agent_2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 270.4801019789218, "std_reward": 18.53212498294415, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T01:47:19.280119"}
|