{ "policy_class": { ":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa4a170f750>" }, "verbose": 1, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [ 8 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null }, "n_envs": 16, "num_timesteps": 2031616, "_total_timesteps": 2015808, "_num_timesteps_at_start": 1015808, "seed": null, "action_noise": null, "start_time": 1677720265014844357, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": { ":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg==" }, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007842016700003285, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVVBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYRiw5KqJcUCUhpRSlIwBbJRL/4wBdJRHQJAMUptrKvF1fZQoaAZoCWgPQwjlYgyso91xQJSGlFKUaBVL92gWR0CQDMT1CgK4dX2UKGgGaAloD0MIy9dl+E+kUUCUhpRSlGgVS7JoFkdAkAzV7Y02tXV9lChoBmgJaA9DCLk2VIwzlHBAlIaUUpRoFU0QAWgWR0CQDPa4MF2WdX2UKGgGaAloD0MISBXFqyzSbUCUhpRSlGgVTQoBaBZHQJANYcfeUIN1fZQoaAZoCWgPQwiVYHE4swVwQJSGlFKUaBVNGgFoFkdAkA3hhQWN3nV9lChoBmgJaA9DCPYoXI/CUXFAlIaUUpRoFU0MAWgWR0CQDfnbItDldX2UKGgGaAloD0MIzxQ6r/HAcECUhpRSlGgVS/BoFkdAkA5/Yao/A3V9lChoBmgJaA9DCNE/wcVK83FAlIaUUpRoFUvqaBZHQJAOy5paibl1fZQoaAZoCWgPQwhxrIvb6GFvQJSGlFKUaBVNDgFoFkdAkA7bIDHOr3V9lChoBmgJaA9DCI1BJ4TODnFAlIaUUpRoFU0SAWgWR0CQDw34bjtHdX2UKGgGaAloD0MIsd6oFeYrc0CUhpRSlGgVTQIBaBZHQJAPDkeZG8V1fZQoaAZoCWgPQwjRrdf0YEVzQJSGlFKUaBVNIAFoFkdAkBF+lXRw63V9lChoBmgJaA9DCOHs1jLZ/3FAlIaUUpRoFU0eAWgWR0CQEYuHvc8DdX2UKGgGaAloD0MI0765vzodckCUhpRSlGgVTQgBaBZHQJARxhd+ocd1fZQoaAZoCWgPQwgmqrcGNkVtQJSGlFKUaBVL+2gWR0CQEfdld1MedX2UKGgGaAloD0MI/reSHRtdckCUhpRSlGgVS/toFkdAkBNq/qPfbnV9lChoBmgJaA9DCJUnEHbKG3NAlIaUUpRoFU0KAWgWR0CQE8/NJOFhdX2UKGgGaAloD0MIPZ6WH7hpckCUhpRSlGgVS+doFkdAkBP4kJKJ23V9lChoBmgJaA9DCKUw73GmUnNAlIaUUpRoFU0cAWgWR0CQE/Hfdhy9dX2UKGgGaAloD0MIxR9FnTlxcUCUhpRSlGgVTRcBaBZHQJAUYaLn9vV1fZQoaAZoCWgPQwjS30vhgf1wQJSGlFKUaBVNFQFoFkdAkBS5UPxx1nV9lChoBmgJaA9DCDv7yoN0RnJAlIaUUpRoFUv1aBZHQJAVZQfp2U11fZQoaAZoCWgPQwgn3gGeNCFwQJSGlFKUaBVNBwFoFkdAkBWEwaisXHV9lChoBmgJaA9DCJdXrrdN2nBAlIaUUpRoFUv8aBZHQJAVg7yQPqd1fZQoaAZoCWgPQwhzEHS0qltxQJSGlFKUaBVNLgFoFkdAkBXxkmQbM3V9lChoBmgJaA9DCAX7r3OThXFAlIaUUpRoFU0lAWgWR0CQFrfE4vOAdX2UKGgGaAloD0MIc56xL1lccUCUhpRSlGgVTSgBaBZHQJAWyZAprk91fZQoaAZoCWgPQwgQXOUJhNpyQJSGlFKUaBVL62gWR0CQF/qRlpXZdX2UKGgGaAloD0MIWW3+X/XCb0CUhpRSlGgVS/JoFkdAkBhT2JzkqHV9lChoBmgJaA9DCPfI5qp5knJAlIaUUpRoFU0FAWgWR0CQGG77bcoIdX2UKGgGaAloD0MIxVVl39XyckCUhpRSlGgVTRkBaBZHQJAY4gow22p1fZQoaAZoCWgPQwg+BFWj18lyQJSGlFKUaBVL+2gWR0CQGhWpIczZdX2UKGgGaAloD0MIwW9DjNdyQUCUhpRSlGgVS9BoFkdAkBouchC+lHV9lChoBmgJaA9DCH/AAwMIRW9AlIaUUpRoFUv1aBZHQJAaYOG0u151fZQoaAZoCWgPQwhQ4nMn2CNzQJSGlFKUaBVL+GgWR0CQGrC79Q40dX2UKGgGaAloD0MIJNBgU2fNcECUhpRSlGgVTQ4BaBZHQJAbfymQ8wJ1fZQoaAZoCWgPQwgn9WVp5xtyQJSGlFKUaBVNIQFoFkdAkDZRGhEjPnV9lChoBmgJaA9DCD5eSIcHgG9AlIaUUpRoFUvpaBZHQJA2ctNBWxR1fZQoaAZoCWgPQwhGlPYG3w9vQJSGlFKUaBVNCgFoFkdAkDbTu4PPLXV9lChoBmgJaA9DCCbkg56NMHBAlIaUUpRoFU0UAWgWR0CQNvmEGqxUdX2UKGgGaAloD0MIvvc3aC91cUCUhpRSlGgVTR4BaBZHQJA3Wy0KJEZ1fZQoaAZoCWgPQwigF+5cWF9wQJSGlFKUaBVL82gWR0CQN6NvwVj7dX2UKGgGaAloD0MIyLYMOEvbRkCUhpRSlGgVS9BoFkdAkDhkqYqoZXV9lChoBmgJaA9DCPc8f9ooGnBAlIaUUpRoFU0VAWgWR0CQOHrDZUT+dX2UKGgGaAloD0MIVtKKbyjycECUhpRSlGgVTQgBaBZHQJA5h0OmR/51fZQoaAZoCWgPQwjrAfOQKahwQJSGlFKUaBVL+GgWR0CQOZbsniNsdX2UKGgGaAloD0MIhiAHJYwCcUCUhpRSlGgVTQMBaBZHQJA6W3gDRtx1fZQoaAZoCWgPQwjb4ET0a2FxQJSGlFKUaBVL+2gWR0CQOy8EFGG3dX2UKGgGaAloD0MIZcIv9bO5cECUhpRSlGgVS/xoFkdAkDtHKr7wa3V9lChoBmgJaA9DCFfMCG8POm1AlIaUUpRoFU0IAWgWR0CQO/lSCOFQdX2UKGgGaAloD0MI1ESfj/LxcECUhpRSlGgVS/JoFkdAkDvyNbTts3V9lChoBmgJaA9DCG4VxECX5XFAlIaUUpRoFU0XAWgWR0CQPC0zTF2ndX2UKGgGaAloD0MIwARu3c3wckCUhpRSlGgVS/1oFkdAkD0hR64Ue3V9lChoBmgJaA9DCLeWyXA843JAlIaUUpRoFU0QAWgWR0CQPcxmTTvzdX2UKGgGaAloD0MIc6Hyr2Vkb0CUhpRSlGgVTQMBaBZHQJA9/zqbBoF1fZQoaAZoCWgPQwh9PPTdbdpyQJSGlFKUaBVL92gWR0CQPhHjp9qldX2UKGgGaAloD0MIhPV/DjNYckCUhpRSlGgVTRQBaBZHQJA+S/dqL0l1fZQoaAZoCWgPQwhjQzf7AypwQJSGlFKUaBVNBgFoFkdAkD64BeXzDnV9lChoBmgJaA9DCB2rlJ6pF3FAlIaUUpRoFUvyaBZHQJA+6M4tHx11fZQoaAZoCWgPQwggf2lRHz1vQJSGlFKUaBVNFgFoFkdAkD/oEOiFkHV9lChoBmgJaA9DCGKBr+hWZ21AlIaUUpRoFUv9aBZHQJBAWc5Ke051fZQoaAZoCWgPQwjMs5JW/AttQJSGlFKUaBVNDAFoFkdAkECxD9fkWHV9lChoBmgJaA9DCNmwprJoX3NAlIaUUpRoFUvzaBZHQJBBsd6sySF1fZQoaAZoCWgPQwj6uDZUzF9wQJSGlFKUaBVNFwFoFkdAkEHnGXHBDXV9lChoBmgJaA9DCP2gLlKohG9AlIaUUpRoFUv4aBZHQJBCiu/1xsF1fZQoaAZoCWgPQwgfgqrRa8ByQJSGlFKUaBVNGQFoFkdAkELKOPvKEHV9lChoBmgJaA9DCLTKTGm9qXJAlIaUUpRoFU0bAWgWR0CQQ7loDgZTdX2UKGgGaAloD0MILxaGyCnjckCUhpRSlGgVTSsBaBZHQJBD/CSA6Ml1fZQoaAZoCWgPQwg2H9eGijBRQJSGlFKUaBVLvGgWR0CQRAlv60pmdX2UKGgGaAloD0MI9FFGXIDOcUCUhpRSlGgVS/RoFkdAkESNxlxwQ3V9lChoBmgJaA9DCBE2PL1SoW5AlIaUUpRoFUv9aBZHQJBEndAPd2x1fZQoaAZoCWgPQwjeOZShKuZxQJSGlFKUaBVL+WgWR0CQRPwh4dIYdX2UKGgGaAloD0MIGv1oOGWdcECUhpRSlGgVTS0BaBZHQJBFQMI/qxF1fZQoaAZoCWgPQwidoE0On4ZUQJSGlFKUaBVLtGgWR0CQRUvcafjCdX2UKGgGaAloD0MIg8DKocUDckCUhpRSlGgVTRYBaBZHQJBFf2/SH/N1fZQoaAZoCWgPQwj8FwgCZEFuQJSGlFKUaBVL/2gWR0CQR7mGM4tIdX2UKGgGaAloD0MIqfsApDakcECUhpRSlGgVTS0BaBZHQJBIULH+6y11fZQoaAZoCWgPQwidnndjgRpyQJSGlFKUaBVNXQFoFkdAkEhZh8Yyf3V9lChoBmgJaA9DCK98lucBCHNAlIaUUpRoFU0DAWgWR0CQSO7BfrrxdX2UKGgGaAloD0MI3XwjuqdzcUCUhpRSlGgVTRIBaBZHQJBJlLzwtrd1fZQoaAZoCWgPQwg2BMdlHGxwQJSGlFKUaBVL+GgWR0CQSYySmqHXdX2UKGgGaAloD0MIFLTJ4VODckCUhpRSlGgVS+poFkdAkEpasp5NXnV9lChoBmgJaA9DCMkiTbwDWHFAlIaUUpRoFU0PAWgWR0CQSnHCGetkdX2UKGgGaAloD0MIILjKEwgYcUCUhpRSlGgVS+ZoFkdAkEp/UjLSu3V9lChoBmgJaA9DCCsv+Z98Fm9AlIaUUpRoFU0BAWgWR0CQSzRO1v2odX2UKGgGaAloD0MI0zHnGTsScUCUhpRSlGgVS/9oFkdAkEuwqd6LO3V9lChoBmgJaA9DCHf3AN2XQnFAlIaUUpRoFUv1aBZHQJBLzrVvuPV1fZQoaAZoCWgPQwi3J0hst+JwQJSGlFKUaBVNEwFoFkdAkEwv1DjR2XV9lChoBmgJaA9DCP9YiA4B+W1AlIaUUpRoFU0LAWgWR0CQTK/95yEMdX2UKGgGaAloD0MID7dDw+JfckCUhpRSlGgVTRcBaBZHQJBNMEt/WlN1fZQoaAZoCWgPQwhW9fI7TW4+QJSGlFKUaBVLi2gWR0CQTS1KGtZFdX2UKGgGaAloD0MICkrRyv16cECUhpRSlGgVTTABaBZHQJBNkMVk+X91fZQoaAZoCWgPQwiU3je+9vxLQJSGlFKUaBVL02gWR0CQTeVh1DBudX2UKGgGaAloD0MILUKxFXS2cECUhpRSlGgVS/toFkdAkE7qDwpe/3V9lChoBmgJaA9DCMnIWdhTmnBAlIaUUpRoFU0VAWgWR0CQTyvqTr3TdX2UKGgGaAloD0MIoWgewGIicUCUhpRSlGgVTQIBaBZHQJBPtVea8Yh1fZQoaAZoCWgPQwjI0/IDV3hwQJSGlFKUaBVL8GgWR0CQUMZSvTw2dX2UKGgGaAloD0MIXTKOkeybb0CUhpRSlGgVS/RoFkdAkFDxz3h4uHV9lChoBmgJaA9DCLg81ozMXXBAlIaUUpRoFU0XAWgWR0CQUQKHfuTidWUu" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 528, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": { ":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null }