mdabbah commited on
Commit
656486d
1 Parent(s): bc7dd14

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.16 +/- 23.46
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9b1741cca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9b1741cd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9b1741cdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9b1741ce50>", "_build": "<function ActorCriticPolicy._build at 0x7f9b1741cee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9b1741cf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9b17422040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9b174220d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9b17422160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9b174221f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9b17422280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9b1741f0c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671701165053199650, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPNaCj7CBu8+/kUJvq4gfb4Cnzy8hh1YvQAAAAAAAAAAzaKcvIXT2rk4gXk5BIHXM+T/1rp4o5O4AACAPwAAgD/A68s9h45aPht7gr2gJFu+HbEPPUAxEb0AAAAAAAAAAGbOyzz06RI+VJcavTOhRb7Q4kq9g4ICPAAAAAAAAAAAmowvPdk6uj6+Ay+7tHGZvlhyArtCvKo9AAAAAAAAAACT3VA+QLZAPwIz2b2CB7i+d1syPTiHGb4AAAAAAAAAAAAAmjr2SFe6opdAu1NcGbtx4g6737MAvAAAgD8AAIA/zQu5vEhns7q3AQO8DW6FPMEEGDxYUGq9AACAPwAAgD/NvVQ9H0XiufrIrrvZ+DA5BD4ZuyzsxjoAAIA/AACAP2aVkbyuIYa6Zdw4OcXv5jQYIWM7QClTuAAAgD8AAIA/ZrYkvVJQt7kA7US8w/FDPS4CzLp80CQ+AACAPwAAgD+ASHm9XLsCul5F2LvLZuG4hRWIuisRTzgAAIA/AACAPxolsr1SwIy5Bpb2Ox+wkjvxdpG7t1cOPAAAAAAAAIA/M5N5O1w7CrpaVFe88vZnvHV/3Ts23D09AACAPwAAgD9moZ+8uI7qucDmETzziem8qoUvu76dzL0AAAAAAACAP8Mieb4a22k/qHRVPrEyvb72q6G9f1sbPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ5Hu5xRkUECUhpRSlIwBbJRL0owBdJRHQJkA3lmvnr91fZQoaAZoCWgPQwhh3uNMU85wQJSGlFKUaBVNPAFoFkdAmQGRh+fAbnV9lChoBmgJaA9DCKsINxmVr3JAlIaUUpRoFU0AAWgWR0CZAz3H7xd6dX2UKGgGaAloD0MIWDfeHdkEckCUhpRSlGgVS/loFkdAmQNClenhsXV9lChoBmgJaA9DCPLrh9ggBnBAlIaUUpRoFU1WAWgWR0CZA4chkiD/dX2UKGgGaAloD0MIdJgvLwANckCUhpRSlGgVTTYBaBZHQJkEJVlwtJ51fZQoaAZoCWgPQwjXicvxio1vQJSGlFKUaBVNDgFoFkdAmQS2T9sJpnV9lChoBmgJaA9DCJG1hlJ7A3BAlIaUUpRoFU0RAWgWR0CZBdluWKMvdX2UKGgGaAloD0MIg4b+Ce4zcECUhpRSlGgVTQkBaBZHQJkF/El3Qld1fZQoaAZoCWgPQwgKKxVUFC5yQJSGlFKUaBVNOAFoFkdAmQYgVGkN4XV9lChoBmgJaA9DCB06Pe9GonBAlIaUUpRoFU0CAWgWR0CZBoryUcGUdX2UKGgGaAloD0MIjfD2IIRjcUCUhpRSlGgVTWEBaBZHQJkG0lF+d9V1fZQoaAZoCWgPQwgrTN9rCP1yQJSGlFKUaBVNGQFoFkdAmQdyPyTY/XV9lChoBmgJaA9DCD6veOqRcnBAlIaUUpRoFU0tAWgWR0CZCMKFZgXudX2UKGgGaAloD0MI98ySADXFcUCUhpRSlGgVTRkBaBZHQJkJCGDcuap1fZQoaAZoCWgPQwhDPBIvT4lwQJSGlFKUaBVNWAFoFkdAmQlq1stTUHV9lChoBmgJaA9DCDD2XnxRRG5AlIaUUpRoFU1aAWgWR0CZCn41xbSrdX2UKGgGaAloD0MIk8SScnflb0CUhpRSlGgVTRYBaBZHQJkLjjNpudh1fZQoaAZoCWgPQwhtdTkl4KJyQJSGlFKUaBVNGwFoFkdAmQuxxDLKWHV9lChoBmgJaA9DCEAv3Lmw629AlIaUUpRoFU0yAWgWR0CZDXnyup0fdX2UKGgGaAloD0MIEcR5OEE8cUCUhpRSlGgVTSIBaBZHQJkNji83+/B1fZQoaAZoCWgPQwi4zVSIR7ZBQJSGlFKUaBVL/2gWR0CZDbGd7OVxdX2UKGgGaAloD0MI8YKI1LSZTkCUhpRSlGgVS+BoFkdAmQ5k4ecQRXV9lChoBmgJaA9DCMRBQpQvOmxAlIaUUpRoFU0jAWgWR0CZDxZuQ6p6dX2UKGgGaAloD0MIQwHbwYjebkCUhpRSlGgVTccBaBZHQJkPemelKsd1fZQoaAZoCWgPQwgz3eukPhluQJSGlFKUaBVNGgFoFkdAmQ+bS/j81nV9lChoBmgJaA9DCFQcB14tvnBAlIaUUpRoFU1EAWgWR0CZD9uM+/xldX2UKGgGaAloD0MIjIF1HP/4cUCUhpRSlGgVTTYBaBZHQJkQGh37k4p1fZQoaAZoCWgPQwgDX9Gt14Q/QJSGlFKUaBVL9GgWR0CZEF7ZWaMKdX2UKGgGaAloD0MI41C/C1t0cECUhpRSlGgVTQcBaBZHQJkRD3JxNqR1fZQoaAZoCWgPQwg91/fhoJxvQJSGlFKUaBVNFwFoFkdAmRHFyBClanV9lChoBmgJaA9DCMtHUtLDx3BAlIaUUpRoFU0yAWgWR0CZE6Hggow3dX2UKGgGaAloD0MIKxIT1PBVTkCUhpRSlGgVS8poFkdAmRQa9K28ZnV9lChoBmgJaA9DCI1iuaVVXHBAlIaUUpRoFU0yAWgWR0CZFN/Q0GeMdX2UKGgGaAloD0MILPNWXQegckCUhpRSlGgVTU4CaBZHQJkVN1IRRMx1fZQoaAZoCWgPQwhZwW9DTAZwQJSGlFKUaBVNRwFoFkdAmRVmIfr8i3V9lChoBmgJaA9DCL/udOeJ8GBAlIaUUpRoFU3oA2gWR0CZY0G6wt8NdX2UKGgGaAloD0MI/te5abOgYkCUhpRSlGgVTegDaBZHQJljfBacI7h1fZQoaAZoCWgPQwjM0HgiiOJcQJSGlFKUaBVN6ANoFkdAmWPgSBbwB3V9lChoBmgJaA9DCGPyBpj5c1xAlIaUUpRoFU3oA2gWR0CZZ4YGdI5HdX2UKGgGaAloD0MIoBov3SQAXkCUhpRSlGgVTegDaBZHQJlohOGj9GZ1fZQoaAZoCWgPQwhxcr9D0SlhQJSGlFKUaBVN6ANoFkdAmWjRxLkCFXV9lChoBmgJaA9DCDvl0Y2wSWBAlIaUUpRoFU3oA2gWR0CZaXsQd0aIdX2UKGgGaAloD0MI6Po+HCTdW0CUhpRSlGgVTegDaBZHQJlqESYgJTl1fZQoaAZoCWgPQwiwNzEkJ7tRQJSGlFKUaBVN6ANoFkdAmWqvHHWBjHV9lChoBmgJaA9DCP3YJD9iH2JAlIaUUpRoFU3oA2gWR0CZbEBRhttRdX2UKGgGaAloD0MIiL1QwHZOYECUhpRSlGgVTegDaBZHQJltvps41gp1fZQoaAZoCWgPQwgzT64pkLRcQJSGlFKUaBVN6ANoFkdAmXDihzvJBHV9lChoBmgJaA9DCIeJBil4DE5AlIaUUpRoFU3oA2gWR0CZcZ/UONHZdX2UKGgGaAloD0MIyogLQKNGWkCUhpRSlGgVTegDaBZHQJlyrCzkZJl1fZQoaAZoCWgPQwgjgnFw6XVfQJSGlFKUaBVN6ANoFkdAmXMqmTC+DnV9lChoBmgJaA9DCC/BqQ8kv11AlIaUUpRoFU3oA2gWR0CZc135vcagdX2UKGgGaAloD0MI2nBYGvhkWkCUhpRSlGgVTegDaBZHQJm7oDKYAsF1fZQoaAZoCWgPQwgkKlQ3F3BUQJSGlFKUaBVN6ANoFkdAmbvNh3JPqXV9lChoBmgJaA9DCGlSCrq9eVhAlIaUUpRoFU3oA2gWR0CZvCKLKmsOdX2UKGgGaAloD0MI6Z51jZbLXUCUhpRSlGgVTegDaBZHQJm/W1/lQuV1fZQoaAZoCWgPQwhVibK3lNFZQJSGlFKUaBVN6ANoFkdAmcBAlWwNb3V9lChoBmgJaA9DCCKI83AChVBAlIaUUpRoFU3oA2gWR0CZwI/wy6+WdX2UKGgGaAloD0MIHR8tzhiqVUCUhpRSlGgVTegDaBZHQJnBMYXO4Xp1fZQoaAZoCWgPQwhcHQBxV/dbQJSGlFKUaBVN6ANoFkdAmcHJZntfHHV9lChoBmgJaA9DCPhQoiWPG19AlIaUUpRoFU3oA2gWR0CZwlxHXmNjdX2UKGgGaAloD0MIATPfwU+eWkCUhpRSlGgVTegDaBZHQJnD8oQWepZ1fZQoaAZoCWgPQwjl8EknEl5fQJSGlFKUaBVN6ANoFkdAmcWP3evZAnV9lChoBmgJaA9DCEcgXtcvfF1AlIaUUpRoFU3oA2gWR0CZyP2ycCo1dX2UKGgGaAloD0MI1NUdi+3rYECUhpRSlGgVTegDaBZHQJnJt7jT8YR1fZQoaAZoCWgPQwhb6iCvh51iQJSGlFKUaBVN6ANoFkdAmcq6NEPUa3V9lChoBmgJaA9DCDum7souZlxAlIaUUpRoFU3oA2gWR0CZyyqG1x82dX2UKGgGaAloD0MITb1uEZhzYECUhpRSlGgVTegDaBZHQJnLY1XNke91fZQoaAZoCWgPQwjeV+VC5ZZZQJSGlFKUaBVN6ANoFkdAmhraesgdO3V9lChoBmgJaA9DCFKdDmS9KGNAlIaUUpRoFU3oA2gWR0CaGw912aDxdX2UKGgGaAloD0MIF/IIbqS/UUCUhpRSlGgVTegDaBZHQJobdCojv/l1fZQoaAZoCWgPQwgyrrg4KgVeQJSGlFKUaBVN6ANoFkdAmh8FzMibD3V9lChoBmgJaA9DCE87/DVZCldAlIaUUpRoFU3oA2gWR0CaH/u89Oh1dX2UKGgGaAloD0MIPfGcLSDoWkCUhpRSlGgVTegDaBZHQJogSHqNZNh1fZQoaAZoCWgPQwgyrOKNzP9eQJSGlFKUaBVN6ANoFkdAmiDxxHXmNnV9lChoBmgJaA9DCKZ/SSpTv11AlIaUUpRoFU3oA2gWR0CaIYAvtdAxdX2UKGgGaAloD0MI6iXGMv0HXECUhpRSlGgVTegDaBZHQJoiKGlANXp1fZQoaAZoCWgPQwiRJ0nXzPJhQJSGlFKUaBVN6ANoFkdAmiPLMotth3V9lChoBmgJaA9DCPhSeNDsG1pAlIaUUpRoFU3oA2gWR0CaJVYg7o0RdX2UKGgGaAloD0MIB3qobUNxYECUhpRSlGgVTegDaBZHQJoow9jgAIZ1fZQoaAZoCWgPQwhVLlT+tfxQQJSGlFKUaBVN6ANoFkdAmil/OY6XB3V9lChoBmgJaA9DCPhtiPGajFhAlIaUUpRoFU3oA2gWR0CaKo+dbxEwdX2UKGgGaAloD0MIkPeqlQn2W0CUhpRSlGgVTegDaBZHQJoq9fShJy11fZQoaAZoCWgPQwgepKfIIQ9WQJSGlFKUaBVN6ANoFkdAmiss3AEdNnV9lChoBmgJaA9DCJBq2O8JnGBAlIaUUpRoFU3oA2gWR0Cad/NVzZHvdX2UKGgGaAloD0MIRSqMLQRbWUCUhpRSlGgVTegDaBZHQJp4Jmukk8l1fZQoaAZoCWgPQwgT9Bd6xBxgQJSGlFKUaBVN6ANoFkdAmniC97F85XV9lChoBmgJaA9DCBcs1QW8SmFAlIaUUpRoFU3oA2gWR0Cae/oL5RCQdX2UKGgGaAloD0MI2pJVEW74X0CUhpRSlGgVTegDaBZHQJp87GuLaVV1fZQoaAZoCWgPQwgL0/cagiFeQJSGlFKUaBVN6ANoFkdAmn04nrpqynV9lChoBmgJaA9DCMakv5fCDl9AlIaUUpRoFU3oA2gWR0CafdLgn+hodX2UKGgGaAloD0MIxm6fVeYGbUCUhpRSlGgVTdkDaBZHQJp+DeuV5bB1fZQoaAZoCWgPQwjFxVG5iUpZQJSGlFKUaBVN6ANoFkdAmn5g2ZRbbHV9lChoBmgJaA9DCLh1N091emRAlIaUUpRoFU3oA2gWR0CagHqKxcFAdX2UKGgGaAloD0MIsoNKXMcDV0CUhpRSlGgVTegDaBZHQJqCCwMYuTR1fZQoaAZoCWgPQwjyRBDnYQdgQJSGlFKUaBVN6ANoFkdAmoU+yu6mO3V9lChoBmgJaA9DCL4SSIldh1BAlIaUUpRoFU3oA2gWR0CahesZHd43dX2UKGgGaAloD0MIQdXo1QBBVkCUhpRSlGgVTegDaBZHQJqG2V1Oj7B1fZQoaAZoCWgPQwiTUWUYd9hWQJSGlFKUaBVN6ANoFkdAmodEzfrKNnV9lChoBmgJaA9DCHdLcsCuiVlAlIaUUpRoFU3oA2gWR0Cah3wjt5UtdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fe769468012c294db8fbd8eeb4da69f33fc03f954eb2a5458b1db9060503f7b
3
+ size 147210
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9b1741cca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9b1741cd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9b1741cdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9b1741ce50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9b1741cee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9b1741cf70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9b17422040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9b174220d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9b17422160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9b174221f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9b17422280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9b1741f0c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671701165053199650,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPNaCj7CBu8+/kUJvq4gfb4Cnzy8hh1YvQAAAAAAAAAAzaKcvIXT2rk4gXk5BIHXM+T/1rp4o5O4AACAPwAAgD/A68s9h45aPht7gr2gJFu+HbEPPUAxEb0AAAAAAAAAAGbOyzz06RI+VJcavTOhRb7Q4kq9g4ICPAAAAAAAAAAAmowvPdk6uj6+Ay+7tHGZvlhyArtCvKo9AAAAAAAAAACT3VA+QLZAPwIz2b2CB7i+d1syPTiHGb4AAAAAAAAAAAAAmjr2SFe6opdAu1NcGbtx4g6737MAvAAAgD8AAIA/zQu5vEhns7q3AQO8DW6FPMEEGDxYUGq9AACAPwAAgD/NvVQ9H0XiufrIrrvZ+DA5BD4ZuyzsxjoAAIA/AACAP2aVkbyuIYa6Zdw4OcXv5jQYIWM7QClTuAAAgD8AAIA/ZrYkvVJQt7kA7US8w/FDPS4CzLp80CQ+AACAPwAAgD+ASHm9XLsCul5F2LvLZuG4hRWIuisRTzgAAIA/AACAPxolsr1SwIy5Bpb2Ox+wkjvxdpG7t1cOPAAAAAAAAIA/M5N5O1w7CrpaVFe88vZnvHV/3Ts23D09AACAPwAAgD9moZ+8uI7qucDmETzziem8qoUvu76dzL0AAAAAAACAP8Mieb4a22k/qHRVPrEyvb72q6G9f1sbPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ5Hu5xRkUECUhpRSlIwBbJRL0owBdJRHQJkA3lmvnr91fZQoaAZoCWgPQwhh3uNMU85wQJSGlFKUaBVNPAFoFkdAmQGRh+fAbnV9lChoBmgJaA9DCKsINxmVr3JAlIaUUpRoFU0AAWgWR0CZAz3H7xd6dX2UKGgGaAloD0MIWDfeHdkEckCUhpRSlGgVS/loFkdAmQNClenhsXV9lChoBmgJaA9DCPLrh9ggBnBAlIaUUpRoFU1WAWgWR0CZA4chkiD/dX2UKGgGaAloD0MIdJgvLwANckCUhpRSlGgVTTYBaBZHQJkEJVlwtJ51fZQoaAZoCWgPQwjXicvxio1vQJSGlFKUaBVNDgFoFkdAmQS2T9sJpnV9lChoBmgJaA9DCJG1hlJ7A3BAlIaUUpRoFU0RAWgWR0CZBdluWKMvdX2UKGgGaAloD0MIg4b+Ce4zcECUhpRSlGgVTQkBaBZHQJkF/El3Qld1fZQoaAZoCWgPQwgKKxVUFC5yQJSGlFKUaBVNOAFoFkdAmQYgVGkN4XV9lChoBmgJaA9DCB06Pe9GonBAlIaUUpRoFU0CAWgWR0CZBoryUcGUdX2UKGgGaAloD0MIjfD2IIRjcUCUhpRSlGgVTWEBaBZHQJkG0lF+d9V1fZQoaAZoCWgPQwgrTN9rCP1yQJSGlFKUaBVNGQFoFkdAmQdyPyTY/XV9lChoBmgJaA9DCD6veOqRcnBAlIaUUpRoFU0tAWgWR0CZCMKFZgXudX2UKGgGaAloD0MI98ySADXFcUCUhpRSlGgVTRkBaBZHQJkJCGDcuap1fZQoaAZoCWgPQwhDPBIvT4lwQJSGlFKUaBVNWAFoFkdAmQlq1stTUHV9lChoBmgJaA9DCDD2XnxRRG5AlIaUUpRoFU1aAWgWR0CZCn41xbSrdX2UKGgGaAloD0MIk8SScnflb0CUhpRSlGgVTRYBaBZHQJkLjjNpudh1fZQoaAZoCWgPQwhtdTkl4KJyQJSGlFKUaBVNGwFoFkdAmQuxxDLKWHV9lChoBmgJaA9DCEAv3Lmw629AlIaUUpRoFU0yAWgWR0CZDXnyup0fdX2UKGgGaAloD0MIEcR5OEE8cUCUhpRSlGgVTSIBaBZHQJkNji83+/B1fZQoaAZoCWgPQwi4zVSIR7ZBQJSGlFKUaBVL/2gWR0CZDbGd7OVxdX2UKGgGaAloD0MI8YKI1LSZTkCUhpRSlGgVS+BoFkdAmQ5k4ecQRXV9lChoBmgJaA9DCMRBQpQvOmxAlIaUUpRoFU0jAWgWR0CZDxZuQ6p6dX2UKGgGaAloD0MIQwHbwYjebkCUhpRSlGgVTccBaBZHQJkPemelKsd1fZQoaAZoCWgPQwgz3eukPhluQJSGlFKUaBVNGgFoFkdAmQ+bS/j81nV9lChoBmgJaA9DCFQcB14tvnBAlIaUUpRoFU1EAWgWR0CZD9uM+/xldX2UKGgGaAloD0MIjIF1HP/4cUCUhpRSlGgVTTYBaBZHQJkQGh37k4p1fZQoaAZoCWgPQwgDX9Gt14Q/QJSGlFKUaBVL9GgWR0CZEF7ZWaMKdX2UKGgGaAloD0MI41C/C1t0cECUhpRSlGgVTQcBaBZHQJkRD3JxNqR1fZQoaAZoCWgPQwg91/fhoJxvQJSGlFKUaBVNFwFoFkdAmRHFyBClanV9lChoBmgJaA9DCMtHUtLDx3BAlIaUUpRoFU0yAWgWR0CZE6Hggow3dX2UKGgGaAloD0MIKxIT1PBVTkCUhpRSlGgVS8poFkdAmRQa9K28ZnV9lChoBmgJaA9DCI1iuaVVXHBAlIaUUpRoFU0yAWgWR0CZFN/Q0GeMdX2UKGgGaAloD0MILPNWXQegckCUhpRSlGgVTU4CaBZHQJkVN1IRRMx1fZQoaAZoCWgPQwhZwW9DTAZwQJSGlFKUaBVNRwFoFkdAmRVmIfr8i3V9lChoBmgJaA9DCL/udOeJ8GBAlIaUUpRoFU3oA2gWR0CZY0G6wt8NdX2UKGgGaAloD0MI/te5abOgYkCUhpRSlGgVTegDaBZHQJljfBacI7h1fZQoaAZoCWgPQwjM0HgiiOJcQJSGlFKUaBVN6ANoFkdAmWPgSBbwB3V9lChoBmgJaA9DCGPyBpj5c1xAlIaUUpRoFU3oA2gWR0CZZ4YGdI5HdX2UKGgGaAloD0MIoBov3SQAXkCUhpRSlGgVTegDaBZHQJlohOGj9GZ1fZQoaAZoCWgPQwhxcr9D0SlhQJSGlFKUaBVN6ANoFkdAmWjRxLkCFXV9lChoBmgJaA9DCDvl0Y2wSWBAlIaUUpRoFU3oA2gWR0CZaXsQd0aIdX2UKGgGaAloD0MI6Po+HCTdW0CUhpRSlGgVTegDaBZHQJlqESYgJTl1fZQoaAZoCWgPQwiwNzEkJ7tRQJSGlFKUaBVN6ANoFkdAmWqvHHWBjHV9lChoBmgJaA9DCP3YJD9iH2JAlIaUUpRoFU3oA2gWR0CZbEBRhttRdX2UKGgGaAloD0MIiL1QwHZOYECUhpRSlGgVTegDaBZHQJltvps41gp1fZQoaAZoCWgPQwgzT64pkLRcQJSGlFKUaBVN6ANoFkdAmXDihzvJBHV9lChoBmgJaA9DCIeJBil4DE5AlIaUUpRoFU3oA2gWR0CZcZ/UONHZdX2UKGgGaAloD0MIyogLQKNGWkCUhpRSlGgVTegDaBZHQJlyrCzkZJl1fZQoaAZoCWgPQwgjgnFw6XVfQJSGlFKUaBVN6ANoFkdAmXMqmTC+DnV9lChoBmgJaA9DCC/BqQ8kv11AlIaUUpRoFU3oA2gWR0CZc135vcagdX2UKGgGaAloD0MI2nBYGvhkWkCUhpRSlGgVTegDaBZHQJm7oDKYAsF1fZQoaAZoCWgPQwgkKlQ3F3BUQJSGlFKUaBVN6ANoFkdAmbvNh3JPqXV9lChoBmgJaA9DCGlSCrq9eVhAlIaUUpRoFU3oA2gWR0CZvCKLKmsOdX2UKGgGaAloD0MI6Z51jZbLXUCUhpRSlGgVTegDaBZHQJm/W1/lQuV1fZQoaAZoCWgPQwhVibK3lNFZQJSGlFKUaBVN6ANoFkdAmcBAlWwNb3V9lChoBmgJaA9DCCKI83AChVBAlIaUUpRoFU3oA2gWR0CZwI/wy6+WdX2UKGgGaAloD0MIHR8tzhiqVUCUhpRSlGgVTegDaBZHQJnBMYXO4Xp1fZQoaAZoCWgPQwhcHQBxV/dbQJSGlFKUaBVN6ANoFkdAmcHJZntfHHV9lChoBmgJaA9DCPhQoiWPG19AlIaUUpRoFU3oA2gWR0CZwlxHXmNjdX2UKGgGaAloD0MIATPfwU+eWkCUhpRSlGgVTegDaBZHQJnD8oQWepZ1fZQoaAZoCWgPQwjl8EknEl5fQJSGlFKUaBVN6ANoFkdAmcWP3evZAnV9lChoBmgJaA9DCEcgXtcvfF1AlIaUUpRoFU3oA2gWR0CZyP2ycCo1dX2UKGgGaAloD0MI1NUdi+3rYECUhpRSlGgVTegDaBZHQJnJt7jT8YR1fZQoaAZoCWgPQwhb6iCvh51iQJSGlFKUaBVN6ANoFkdAmcq6NEPUa3V9lChoBmgJaA9DCDum7souZlxAlIaUUpRoFU3oA2gWR0CZyyqG1x82dX2UKGgGaAloD0MITb1uEZhzYECUhpRSlGgVTegDaBZHQJnLY1XNke91fZQoaAZoCWgPQwjeV+VC5ZZZQJSGlFKUaBVN6ANoFkdAmhraesgdO3V9lChoBmgJaA9DCFKdDmS9KGNAlIaUUpRoFU3oA2gWR0CaGw912aDxdX2UKGgGaAloD0MIF/IIbqS/UUCUhpRSlGgVTegDaBZHQJobdCojv/l1fZQoaAZoCWgPQwgyrrg4KgVeQJSGlFKUaBVN6ANoFkdAmh8FzMibD3V9lChoBmgJaA9DCE87/DVZCldAlIaUUpRoFU3oA2gWR0CaH/u89Oh1dX2UKGgGaAloD0MIPfGcLSDoWkCUhpRSlGgVTegDaBZHQJogSHqNZNh1fZQoaAZoCWgPQwgyrOKNzP9eQJSGlFKUaBVN6ANoFkdAmiDxxHXmNnV9lChoBmgJaA9DCKZ/SSpTv11AlIaUUpRoFU3oA2gWR0CaIYAvtdAxdX2UKGgGaAloD0MI6iXGMv0HXECUhpRSlGgVTegDaBZHQJoiKGlANXp1fZQoaAZoCWgPQwiRJ0nXzPJhQJSGlFKUaBVN6ANoFkdAmiPLMotth3V9lChoBmgJaA9DCPhSeNDsG1pAlIaUUpRoFU3oA2gWR0CaJVYg7o0RdX2UKGgGaAloD0MIB3qobUNxYECUhpRSlGgVTegDaBZHQJoow9jgAIZ1fZQoaAZoCWgPQwhVLlT+tfxQQJSGlFKUaBVN6ANoFkdAmil/OY6XB3V9lChoBmgJaA9DCPhtiPGajFhAlIaUUpRoFU3oA2gWR0CaKo+dbxEwdX2UKGgGaAloD0MIkPeqlQn2W0CUhpRSlGgVTegDaBZHQJoq9fShJy11fZQoaAZoCWgPQwgepKfIIQ9WQJSGlFKUaBVN6ANoFkdAmiss3AEdNnV9lChoBmgJaA9DCJBq2O8JnGBAlIaUUpRoFU3oA2gWR0Cad/NVzZHvdX2UKGgGaAloD0MIRSqMLQRbWUCUhpRSlGgVTegDaBZHQJp4Jmukk8l1fZQoaAZoCWgPQwgT9Bd6xBxgQJSGlFKUaBVN6ANoFkdAmniC97F85XV9lChoBmgJaA9DCBcs1QW8SmFAlIaUUpRoFU3oA2gWR0Cae/oL5RCQdX2UKGgGaAloD0MI2pJVEW74X0CUhpRSlGgVTegDaBZHQJp87GuLaVV1fZQoaAZoCWgPQwgL0/cagiFeQJSGlFKUaBVN6ANoFkdAmn04nrpqynV9lChoBmgJaA9DCMakv5fCDl9AlIaUUpRoFU3oA2gWR0CafdLgn+hodX2UKGgGaAloD0MIxm6fVeYGbUCUhpRSlGgVTdkDaBZHQJp+DeuV5bB1fZQoaAZoCWgPQwjFxVG5iUpZQJSGlFKUaBVN6ANoFkdAmn5g2ZRbbHV9lChoBmgJaA9DCLh1N091emRAlIaUUpRoFU3oA2gWR0CagHqKxcFAdX2UKGgGaAloD0MIsoNKXMcDV0CUhpRSlGgVTegDaBZHQJqCCwMYuTR1fZQoaAZoCWgPQwjyRBDnYQdgQJSGlFKUaBVN6ANoFkdAmoU+yu6mO3V9lChoBmgJaA9DCL4SSIldh1BAlIaUUpRoFU3oA2gWR0CahesZHd43dX2UKGgGaAloD0MIQdXo1QBBVkCUhpRSlGgVTegDaBZHQJqG2V1Oj7B1fZQoaAZoCWgPQwiTUWUYd9hWQJSGlFKUaBVN6ANoFkdAmodEzfrKNnV9lChoBmgJaA9DCHdLcsCuiVlAlIaUUpRoFU3oA2gWR0Cah3wjt5UtdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41c4e722a23a1ac871e58111bacf191d28ad5ff0fefe09e31c29d3058e4d6848
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac322cd8573f65e8f1a6cae2bad6bf527786228c24c92926f8856418f9483496
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (219 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.15913036372817, "std_reward": 23.458489354564023, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-22T09:51:21.942681"}