File size: 10,427 Bytes
208b0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import argparse
import re
import os
from tqdm import tqdm

import pandas as pd
import torch
from natsort import index_natsorted
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

from utils.logger import logger


def extract_output(s, prefix='"rewritten description": '):
    """Customize the function according to the prompt."""
    # Since some LLMs struggles to output strictly formatted JSON strings as specified by the prompt,
    # thus manually parse the output string `{"rewritten description": "your rewritten description here"}`.
    match = re.search(r"{(.+?)}", s, re.DOTALL)
    if not match:
        logger.warning(f"{s} is not in the json format. Return None.")
        return None
    output = match.group(1).strip()
    if output.startswith(prefix):
        output = output[len(prefix) :]
        if output[0] == '"' and output[-1] == '"':
            return output[1:-1]
        else:
            logger.warning(f"{output} does not start and end with the double quote. Return None.")
            return None
    else:
        logger.warning(f"{output} does not start with {prefix}. Return None.")
        return None


def parse_args():
    parser = argparse.ArgumentParser(description="Rewrite the video caption by LLMs.")
    parser.add_argument(
        "--video_metadata_path", type=str, required=True, help="The path to the video dataset metadata (csv/jsonl)."
    )
    parser.add_argument(
        "--video_path_column",
        type=str,
        default=None,
        help="The column contains the video path (an absolute path or a relative path w.r.t the video_folder).",
    )
    parser.add_argument(
        "--caption_column",
        type=str,
        default="caption",
        help="The column contains the video caption.",
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=128,
        required=False,
        help="The batch size for vllm inference. Adjust according to the number of GPUs to maximize inference throughput.",
    )
    parser.add_argument(
        "--model_name",
        type=str,
        default="NousResearch/Meta-Llama-3-8B-Instruct",
    )
    parser.add_argument(
        "--prompt",
        type=str,
        required=True,
        help="A string or a txt file contains the prompt.",
    )
    parser.add_argument(
        "--prefix",
        type=str,
        required=True,
        help="The prefix to extract the output from LLMs.",
    )
    parser.add_argument("--saved_path", type=str, required=True, help="The save path to the output results (csv/jsonl).")
    parser.add_argument("--saved_freq", type=int, default=1, help="The frequency to save the output results.")

    args = parser.parse_args()
    return args


def main():
    args = parse_args()

    if args.video_metadata_path.endswith(".csv"):
        video_metadata_df = pd.read_csv(args.video_metadata_path)
    elif args.video_metadata_path.endswith(".jsonl"):
        video_metadata_df = pd.read_json(args.video_metadata_path, lines=True)
    elif args.video_metadata_path.endswith(".json"):
        video_metadata_df = pd.read_json(args.video_metadata_path)
    else:
        raise ValueError(f"The {args.video_metadata_path} must end with .csv, .jsonl or .json.")

    saved_suffix = os.path.splitext(args.saved_path)[1]
    if saved_suffix not in set([".csv", ".jsonl", ".json"]):
        raise ValueError(f"The saved_path must end with .csv, .jsonl or .json.")

    if os.path.exists(args.saved_path) and args.video_path_column is not None:
        if args.saved_path.endswith(".csv"):
            saved_metadata_df = pd.read_csv(args.saved_path)
        elif args.saved_path.endswith(".jsonl"):
            saved_metadata_df = pd.read_json(args.saved_path, lines=True)

        # Filter out the unprocessed video-caption pairs by setting the indicator=True.
        merged_df = video_metadata_df.merge(saved_metadata_df, on=args.video_path_column, how="outer", indicator=True)
        video_metadata_df = merged_df[merged_df["_merge"] == "left_only"]
        # Sorting to guarantee the same result for each process.
        video_metadata_df = video_metadata_df.iloc[index_natsorted(video_metadata_df[args.video_path_column])].reset_index(
            drop=True
        )
        logger.info(
            f"Resume from {args.saved_path}: {len(saved_metadata_df)} processed and {len(video_metadata_df)} to be processed."
        )

    if args.prompt.endswith(".txt") and os.path.exists(args.prompt):
        with open(args.prompt, "r") as f:
            args.prompt = "".join(f.readlines())
    logger.info(f"Prompt: {args.prompt}")

    if args.video_path_column is not None:
        video_path_list = video_metadata_df[args.video_path_column].tolist()
    if args.caption_column in video_metadata_df.columns:
        sampled_frame_caption_list = video_metadata_df[args.caption_column].tolist()
    else:
        # When two columns with the same name, the dataframe merge operation on will distinguish them by adding 'x' and 'y'.
        sampled_frame_caption_list = video_metadata_df[args.caption_column + "_x"].tolist()

    CUDA_VISIBLE_DEVICES = os.getenv("CUDA_VISIBLE_DEVICES", None)
    tensor_parallel_size = torch.cuda.device_count() if CUDA_VISIBLE_DEVICES is None else len(CUDA_VISIBLE_DEVICES.split(","))
    logger.info(f"Automatically set tensor_parallel_size={tensor_parallel_size} based on the available devices.")

    llm = LLM(model=args.model_name, trust_remote_code=True, tensor_parallel_size=tensor_parallel_size)
    if "Meta-Llama-3" in args.model_name:
        if "Meta-Llama-3-70B" in args.model_name:
            # Llama-3-70B should use the tokenizer from Llama-3-8B
            # https://github.com/vllm-project/vllm/issues/4180#issuecomment-2068292942
            tokenizer = AutoTokenizer.from_pretrained("NousResearch/Meta-Llama-3-8B-Instruct")
        else:
            tokenizer = AutoTokenizer.from_pretrained(args.model_name)
        stop_token_ids = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
        sampling_params = SamplingParams(temperature=0.7, top_p=1, max_tokens=1024, stop_token_ids=stop_token_ids)
    else:
        tokenizer = AutoTokenizer.from_pretrained(args.model_name)
        sampling_params = SamplingParams(temperature=0.7, top_p=1, max_tokens=1024)

    result_dict = {args.caption_column: []}
    if args.video_path_column is not None:
        result_dict = {args.video_path_column: [], args.caption_column: []}

    for i in tqdm(range(0, len(sampled_frame_caption_list), args.batch_size)):
        if args.video_path_column is not None:
            batch_video_path = video_path_list[i : i + args.batch_size]
        batch_caption = sampled_frame_caption_list[i : i + args.batch_size]
        batch_prompt = []
        for caption in batch_caption:
            # batch_prompt.append("user:" + args.prompt + str(caption) + "\n assistant:")
            messages = [
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": args.prompt + "\n" + str(caption)},
            ]
            text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            batch_prompt.append(text)

        batch_output = llm.generate(batch_prompt, sampling_params)
        batch_output = [output.outputs[0].text.rstrip() for output in batch_output]
        batch_output = [extract_output(output, prefix=args.prefix) for output in batch_output]

        # Filter out data that does not meet the output format.
        batch_result = []
        if args.video_path_column is not None:
            for video_path, output in zip(batch_video_path, batch_output):
                if output is not None:
                    batch_result.append((video_path, output))
            batch_video_path, batch_output = zip(*batch_result)

            result_dict[args.video_path_column].extend(batch_video_path)
        else:
            for output in batch_output:
                if output is not None:
                    batch_result.append(output)

            result_dict[args.caption_column].extend(batch_result)

        # Save the metadata every args.saved_freq.
        if i != 0 and ((i // args.batch_size) % args.saved_freq) == 0:
            if len(result_dict[args.caption_column]) > 0:
                result_df = pd.DataFrame(result_dict)
                if args.saved_path.endswith(".csv"):
                    header = True if not os.path.exists(args.saved_path) else False
                    result_df.to_csv(args.saved_path, header=header, index=False, mode="a")
                elif args.saved_path.endswith(".jsonl"):
                    result_df.to_json(args.saved_path, orient="records", lines=True, mode="a", force_ascii=False)
                elif args.saved_path.endswith(".json"):
                    # Append is not supported.
                    if os.path.exists(args.saved_path):
                        saved_df = pd.read_json(args.saved_path, orient="records")
                        result_df = pd.concat([saved_df, result_df], ignore_index=True)
                    result_df.to_json(args.saved_path, orient="records", indent=4, force_ascii=False)
                logger.info(f"Save result to {args.saved_path}.")

            result_dict = {args.caption_column: []}
            if args.video_path_column is not None:
                result_dict = {args.video_path_column: [], args.caption_column: []}

    if len(result_dict[args.caption_column]) > 0:
        result_df = pd.DataFrame(result_dict)
        if args.saved_path.endswith(".csv"):
            header = True if not os.path.exists(args.saved_path) else False
            result_df.to_csv(args.saved_path, header=header, index=False, mode="a")
        elif args.saved_path.endswith(".jsonl"):
            result_df.to_json(args.saved_path, orient="records", lines=True, mode="a")
        elif args.saved_path.endswith(".json"):
            # Append is not supported.
            if os.path.exists(args.saved_path):
                saved_df = pd.read_json(args.saved_path, orient="records")
                result_df = pd.concat([saved_df, result_df], ignore_index=True)
            result_df.to_json(args.saved_path, orient="records", indent=4, force_ascii=False)
        logger.info(f"Save the final result to {args.saved_path}.")


if __name__ == "__main__":
    main()