File size: 9,329 Bytes
208b0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import argparse
import os
from pathlib import Path

import easyocr
import numpy as np
import pandas as pd
from accelerate import PartialState
from accelerate.utils import gather_object
from natsort import natsorted
from tqdm import tqdm
from torchvision.datasets.utils import download_url

from utils.logger import logger
from utils.video_utils import extract_frames
from utils.filter import filter


def init_ocr_reader(root: str = "~/.cache/easyocr", device: str = "gpu"):
    root = os.path.expanduser(root)
    if not os.path.exists(root):
        os.makedirs(root)
    download_url(
        "https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/video_caption/easyocr/craft_mlt_25k.pth",
        root,
        filename="craft_mlt_25k.pth",
        md5="2f8227d2def4037cdb3b34389dcf9ec1",
    )
    ocr_reader = easyocr.Reader(
        lang_list=["en", "ch_sim"],
        gpu=device,
        recognizer=False,
        verbose=False,
        model_storage_directory=root,
    )

    return ocr_reader


def triangle_area(p1, p2, p3):
    """Compute the triangle area according to its coordinates.
    """
    x1, y1 = p1
    x2, y2 = p2
    x3, y3 = p3
    tri_area = 0.5 * np.abs(x1 * y2 + x2 * y3 + x3 * y1 - x2 * y1 - x3 * y2 - x1 * y3)
    return tri_area


def compute_text_score(video_path, ocr_reader):
    _, images = extract_frames(video_path, sample_method="mid")
    images = [np.array(image) for image in images]

    frame_ocr_area_ratios = []
    for image in images:
        # horizontal detected results and free-form detected
        horizontal_list, free_list = ocr_reader.detect(np.asarray(image))
        width, height = image.shape[0], image.shape[1]

        total_area = width * height
        # rectangles
        rect_area = 0
        for xmin, xmax, ymin, ymax in horizontal_list[0]:
            if xmax < xmin or ymax < ymin:
                continue
            rect_area += (xmax - xmin) * (ymax - ymin)
        # free-form
        quad_area = 0
        try:
            for points in free_list[0]:
                triangle1 = points[:3]
                quad_area += triangle_area(*triangle1)
                triangle2 = points[3:] + [points[0]]
                quad_area += triangle_area(*triangle2)
        except:
            quad_area = 0
        text_area = rect_area + quad_area

        frame_ocr_area_ratios.append(text_area / total_area)

    video_meta_info = {
        "video_path": Path(video_path).name,
        "text_score": round(np.mean(frame_ocr_area_ratios), 5),
    }

    return video_meta_info


def parse_args():
    parser = argparse.ArgumentParser(description="Compute the text score of the middle frame in the videos.")
    parser.add_argument("--video_folder", type=str, default="", help="The video folder.")
    parser.add_argument(
        "--video_metadata_path", type=str, default=None, help="The path to the video dataset metadata (csv/jsonl)."
    )
    parser.add_argument(
        "--video_path_column",
        type=str,
        default="video_path",
        help="The column contains the video path (an absolute path or a relative path w.r.t the video_folder).",
    )
    parser.add_argument("--saved_path", type=str, required=True, help="The save path to the output results (csv/jsonl).")
    parser.add_argument("--saved_freq", type=int, default=100, help="The frequency to save the output results.")

    parser.add_argument(
        "--basic_metadata_path", type=str, default=None, help="The path to the basic metadata (csv/jsonl)."
    )
    parser.add_argument("--min_resolution", type=float, default=0, help="The resolution threshold.")
    parser.add_argument("--min_duration", type=float, default=-1, help="The minimum duration.")
    parser.add_argument("--max_duration", type=float, default=-1, help="The maximum duration.")
    parser.add_argument(
        "--asethetic_score_metadata_path", type=str, default=None, help="The path to the video quality metadata (csv/jsonl)."
    )
    parser.add_argument("--min_asethetic_score", type=float, default=4.0, help="The asethetic score threshold.")
    parser.add_argument(
        "--asethetic_score_siglip_metadata_path", type=str, default=None, help="The path to the video quality metadata (csv/jsonl)."
    )
    parser.add_argument("--min_asethetic_score_siglip", type=float, default=4.0, help="The asethetic score (SigLIP) threshold.")
    parser.add_argument(
        "--motion_score_metadata_path", type=str, default=None, help="The path to the video motion score metadata (csv/jsonl)."
    )
    parser.add_argument("--min_motion_score", type=float, default=2, help="The motion threshold.")

    args = parser.parse_args()
    return args


def main():
    args = parse_args()

    if args.video_metadata_path.endswith(".csv"):
        video_metadata_df = pd.read_csv(args.video_metadata_path)
    elif args.video_metadata_path.endswith(".jsonl"):
        video_metadata_df = pd.read_json(args.video_metadata_path, lines=True)
    else:
        raise ValueError("The video_metadata_path must end with .csv or .jsonl.")
    video_path_list = video_metadata_df[args.video_path_column].tolist()

    if not (args.saved_path.endswith(".csv") or args.saved_path.endswith(".jsonl")):
        raise ValueError("The saved_path must end with .csv or .jsonl.")

    if os.path.exists(args.saved_path):
        if args.saved_path.endswith(".csv"):
            saved_metadata_df = pd.read_csv(args.saved_path)
        elif args.saved_path.endswith(".jsonl"):
            saved_metadata_df = pd.read_json(args.saved_path, lines=True)
        saved_video_path_list = saved_metadata_df[args.video_path_column].tolist()
        video_path_list = list(set(video_path_list).difference(set(saved_video_path_list)))
        logger.info(f"Resume from {args.saved_path}: {len(saved_video_path_list)} processed and {len(video_path_list)} to be processed.")
    
    video_path_list = filter(
        video_path_list,
        basic_metadata_path=args.basic_metadata_path,
        min_resolution=args.min_resolution,
        min_duration=args.min_duration,
        max_duration=args.max_duration,
        asethetic_score_metadata_path=args.asethetic_score_metadata_path,
        min_asethetic_score=args.min_asethetic_score,
        asethetic_score_siglip_metadata_path=args.asethetic_score_siglip_metadata_path,
        min_asethetic_score_siglip=args.min_asethetic_score_siglip,
        motion_score_metadata_path=args.motion_score_metadata_path,
        min_motion_score=args.min_motion_score,
    )
    video_path_list = [os.path.join(args.video_folder, video_path) for video_path in video_path_list]
    # Sorting to guarantee the same result for each process.
    video_path_list = natsorted(video_path_list)

    state = PartialState()
    if state.is_main_process:
        # Check if the model is downloaded in the main process.
        ocr_reader = init_ocr_reader(device="cpu")
    state.wait_for_everyone()
    ocr_reader = init_ocr_reader(device=state.device)

    index = len(video_path_list) - len(video_path_list) % state.num_processes
    # Avoid the NCCL timeout in the final gather operation.
    logger.info(f"Drop {len(video_path_list) % state.num_processes} videos to ensure each process handles the same number of videos.")
    video_path_list = video_path_list[:index]
    logger.info(f"{len(video_path_list)} videos are to be processed.")

    result_list = []
    with state.split_between_processes(video_path_list) as splitted_video_path_list:
        for i, video_path in enumerate(tqdm(splitted_video_path_list)):
            try:
                video_meta_info = compute_text_score(video_path, ocr_reader)
                result_list.append(video_meta_info)
            except Exception as e:
                logger.warning(f"Compute text score for video {video_path} with error: {e}.")
            if i != 0 and i % args.saved_freq == 0:
                state.wait_for_everyone()
                gathered_result_list = gather_object(result_list)
                if state.is_main_process and len(gathered_result_list) != 0:
                    result_df = pd.DataFrame(gathered_result_list)
                    if args.saved_path.endswith(".csv"):
                        header = False if os.path.exists(args.saved_path) else True
                        result_df.to_csv(args.saved_path, header=header, index=False, mode="a")
                    elif args.saved_path.endswith(".jsonl"):
                        result_df.to_json(args.saved_path, orient="records", lines=True, mode="a", force_ascii=False)
                    logger.info(f"Save result to {args.saved_path}.")
                result_list = []

    state.wait_for_everyone()
    gathered_result_list = gather_object(result_list)
    if state.is_main_process and len(gathered_result_list) != 0:
        result_df = pd.DataFrame(gathered_result_list)
        if args.saved_path.endswith(".csv"):
            header = False if os.path.exists(args.saved_path) else True
            result_df.to_csv(args.saved_path, header=header, index=False, mode="a")
        elif args.saved_path.endswith(".jsonl"):
            result_df.to_json(args.saved_path, orient="records", lines=True, mode="a", force_ascii=False)
        logger.info(f"Save the final result to {args.saved_path}.")


if __name__ == "__main__":
    main()