File size: 9,329 Bytes
208b0eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import argparse
import os
from pathlib import Path
import easyocr
import numpy as np
import pandas as pd
from accelerate import PartialState
from accelerate.utils import gather_object
from natsort import natsorted
from tqdm import tqdm
from torchvision.datasets.utils import download_url
from utils.logger import logger
from utils.video_utils import extract_frames
from utils.filter import filter
def init_ocr_reader(root: str = "~/.cache/easyocr", device: str = "gpu"):
root = os.path.expanduser(root)
if not os.path.exists(root):
os.makedirs(root)
download_url(
"https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/video_caption/easyocr/craft_mlt_25k.pth",
root,
filename="craft_mlt_25k.pth",
md5="2f8227d2def4037cdb3b34389dcf9ec1",
)
ocr_reader = easyocr.Reader(
lang_list=["en", "ch_sim"],
gpu=device,
recognizer=False,
verbose=False,
model_storage_directory=root,
)
return ocr_reader
def triangle_area(p1, p2, p3):
"""Compute the triangle area according to its coordinates.
"""
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
tri_area = 0.5 * np.abs(x1 * y2 + x2 * y3 + x3 * y1 - x2 * y1 - x3 * y2 - x1 * y3)
return tri_area
def compute_text_score(video_path, ocr_reader):
_, images = extract_frames(video_path, sample_method="mid")
images = [np.array(image) for image in images]
frame_ocr_area_ratios = []
for image in images:
# horizontal detected results and free-form detected
horizontal_list, free_list = ocr_reader.detect(np.asarray(image))
width, height = image.shape[0], image.shape[1]
total_area = width * height
# rectangles
rect_area = 0
for xmin, xmax, ymin, ymax in horizontal_list[0]:
if xmax < xmin or ymax < ymin:
continue
rect_area += (xmax - xmin) * (ymax - ymin)
# free-form
quad_area = 0
try:
for points in free_list[0]:
triangle1 = points[:3]
quad_area += triangle_area(*triangle1)
triangle2 = points[3:] + [points[0]]
quad_area += triangle_area(*triangle2)
except:
quad_area = 0
text_area = rect_area + quad_area
frame_ocr_area_ratios.append(text_area / total_area)
video_meta_info = {
"video_path": Path(video_path).name,
"text_score": round(np.mean(frame_ocr_area_ratios), 5),
}
return video_meta_info
def parse_args():
parser = argparse.ArgumentParser(description="Compute the text score of the middle frame in the videos.")
parser.add_argument("--video_folder", type=str, default="", help="The video folder.")
parser.add_argument(
"--video_metadata_path", type=str, default=None, help="The path to the video dataset metadata (csv/jsonl)."
)
parser.add_argument(
"--video_path_column",
type=str,
default="video_path",
help="The column contains the video path (an absolute path or a relative path w.r.t the video_folder).",
)
parser.add_argument("--saved_path", type=str, required=True, help="The save path to the output results (csv/jsonl).")
parser.add_argument("--saved_freq", type=int, default=100, help="The frequency to save the output results.")
parser.add_argument(
"--basic_metadata_path", type=str, default=None, help="The path to the basic metadata (csv/jsonl)."
)
parser.add_argument("--min_resolution", type=float, default=0, help="The resolution threshold.")
parser.add_argument("--min_duration", type=float, default=-1, help="The minimum duration.")
parser.add_argument("--max_duration", type=float, default=-1, help="The maximum duration.")
parser.add_argument(
"--asethetic_score_metadata_path", type=str, default=None, help="The path to the video quality metadata (csv/jsonl)."
)
parser.add_argument("--min_asethetic_score", type=float, default=4.0, help="The asethetic score threshold.")
parser.add_argument(
"--asethetic_score_siglip_metadata_path", type=str, default=None, help="The path to the video quality metadata (csv/jsonl)."
)
parser.add_argument("--min_asethetic_score_siglip", type=float, default=4.0, help="The asethetic score (SigLIP) threshold.")
parser.add_argument(
"--motion_score_metadata_path", type=str, default=None, help="The path to the video motion score metadata (csv/jsonl)."
)
parser.add_argument("--min_motion_score", type=float, default=2, help="The motion threshold.")
args = parser.parse_args()
return args
def main():
args = parse_args()
if args.video_metadata_path.endswith(".csv"):
video_metadata_df = pd.read_csv(args.video_metadata_path)
elif args.video_metadata_path.endswith(".jsonl"):
video_metadata_df = pd.read_json(args.video_metadata_path, lines=True)
else:
raise ValueError("The video_metadata_path must end with .csv or .jsonl.")
video_path_list = video_metadata_df[args.video_path_column].tolist()
if not (args.saved_path.endswith(".csv") or args.saved_path.endswith(".jsonl")):
raise ValueError("The saved_path must end with .csv or .jsonl.")
if os.path.exists(args.saved_path):
if args.saved_path.endswith(".csv"):
saved_metadata_df = pd.read_csv(args.saved_path)
elif args.saved_path.endswith(".jsonl"):
saved_metadata_df = pd.read_json(args.saved_path, lines=True)
saved_video_path_list = saved_metadata_df[args.video_path_column].tolist()
video_path_list = list(set(video_path_list).difference(set(saved_video_path_list)))
logger.info(f"Resume from {args.saved_path}: {len(saved_video_path_list)} processed and {len(video_path_list)} to be processed.")
video_path_list = filter(
video_path_list,
basic_metadata_path=args.basic_metadata_path,
min_resolution=args.min_resolution,
min_duration=args.min_duration,
max_duration=args.max_duration,
asethetic_score_metadata_path=args.asethetic_score_metadata_path,
min_asethetic_score=args.min_asethetic_score,
asethetic_score_siglip_metadata_path=args.asethetic_score_siglip_metadata_path,
min_asethetic_score_siglip=args.min_asethetic_score_siglip,
motion_score_metadata_path=args.motion_score_metadata_path,
min_motion_score=args.min_motion_score,
)
video_path_list = [os.path.join(args.video_folder, video_path) for video_path in video_path_list]
# Sorting to guarantee the same result for each process.
video_path_list = natsorted(video_path_list)
state = PartialState()
if state.is_main_process:
# Check if the model is downloaded in the main process.
ocr_reader = init_ocr_reader(device="cpu")
state.wait_for_everyone()
ocr_reader = init_ocr_reader(device=state.device)
index = len(video_path_list) - len(video_path_list) % state.num_processes
# Avoid the NCCL timeout in the final gather operation.
logger.info(f"Drop {len(video_path_list) % state.num_processes} videos to ensure each process handles the same number of videos.")
video_path_list = video_path_list[:index]
logger.info(f"{len(video_path_list)} videos are to be processed.")
result_list = []
with state.split_between_processes(video_path_list) as splitted_video_path_list:
for i, video_path in enumerate(tqdm(splitted_video_path_list)):
try:
video_meta_info = compute_text_score(video_path, ocr_reader)
result_list.append(video_meta_info)
except Exception as e:
logger.warning(f"Compute text score for video {video_path} with error: {e}.")
if i != 0 and i % args.saved_freq == 0:
state.wait_for_everyone()
gathered_result_list = gather_object(result_list)
if state.is_main_process and len(gathered_result_list) != 0:
result_df = pd.DataFrame(gathered_result_list)
if args.saved_path.endswith(".csv"):
header = False if os.path.exists(args.saved_path) else True
result_df.to_csv(args.saved_path, header=header, index=False, mode="a")
elif args.saved_path.endswith(".jsonl"):
result_df.to_json(args.saved_path, orient="records", lines=True, mode="a", force_ascii=False)
logger.info(f"Save result to {args.saved_path}.")
result_list = []
state.wait_for_everyone()
gathered_result_list = gather_object(result_list)
if state.is_main_process and len(gathered_result_list) != 0:
result_df = pd.DataFrame(gathered_result_list)
if args.saved_path.endswith(".csv"):
header = False if os.path.exists(args.saved_path) else True
result_df.to_csv(args.saved_path, header=header, index=False, mode="a")
elif args.saved_path.endswith(".jsonl"):
result_df.to_json(args.saved_path, orient="records", lines=True, mode="a", force_ascii=False)
logger.info(f"Save the final result to {args.saved_path}.")
if __name__ == "__main__":
main() |