|
import argparse |
|
import os |
|
from copy import deepcopy |
|
from pathlib import Path |
|
from multiprocessing import Pool |
|
|
|
import pandas as pd |
|
from scenedetect import open_video, SceneManager |
|
from scenedetect.detectors import ContentDetector |
|
from tqdm import tqdm |
|
|
|
from utils.logger import logger |
|
|
|
|
|
def cutscene_detection_star(args): |
|
return cutscene_detection(*args) |
|
|
|
|
|
def cutscene_detection(video_path, saved_path, cutscene_threshold=27, min_scene_len=15): |
|
try: |
|
if os.path.exists(saved_path): |
|
logger.info(f"{video_path} has been processed.") |
|
return |
|
|
|
|
|
video = open_video(video_path, backend="pyav") |
|
frame_rate, frame_size = video.frame_rate, video.frame_size |
|
duration = deepcopy(video.duration) |
|
|
|
frame_points, frame_timecode = [], {} |
|
scene_manager = SceneManager() |
|
scene_manager.add_detector( |
|
|
|
ContentDetector(threshold=cutscene_threshold, min_scene_len=min_scene_len) |
|
) |
|
scene_manager.detect_scenes(video, show_progress=False) |
|
scene_list = scene_manager.get_scene_list() |
|
for scene in scene_list: |
|
for frame_time_code in scene: |
|
frame_index = frame_time_code.get_frames() |
|
if frame_index not in frame_points: |
|
frame_points.append(frame_index) |
|
frame_timecode[frame_index] = frame_time_code |
|
|
|
del video, scene_manager |
|
|
|
frame_points = sorted(frame_points) |
|
output_scene_list = [] |
|
for idx in range(len(frame_points) - 1): |
|
output_scene_list.append((frame_timecode[frame_points[idx]], frame_timecode[frame_points[idx+1]])) |
|
|
|
timecode_list = [(frame_timecode_tuple[0].get_timecode(), frame_timecode_tuple[1].get_timecode()) for frame_timecode_tuple in output_scene_list] |
|
meta_scene = [{ |
|
"video_path": Path(video_path).name, |
|
"timecode_list": timecode_list, |
|
"fram_rate": frame_rate, |
|
"frame_size": frame_size, |
|
"duration": str(duration) |
|
}] |
|
pd.DataFrame(meta_scene).to_json(saved_path, orient="records", lines=True) |
|
except Exception as e: |
|
logger.warning(f"Cutscene detection with {video_path} failed. Error is: {e}.") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Cutscene Detection") |
|
parser.add_argument( |
|
"--video_metadata_path", type=str, required=True, help="The path to the video dataset metadata (csv/jsonl)." |
|
) |
|
parser.add_argument( |
|
"--video_path_column", |
|
type=str, |
|
default="video_path", |
|
help="The column contains the video path (an absolute path or a relative path w.r.t the video_folder).", |
|
) |
|
parser.add_argument("--video_folder", type=str, default="", help="The video folder.") |
|
parser.add_argument("--saved_folder", type=str, required=True, help="The save path to the output results (csv/jsonl).") |
|
parser.add_argument("--n_jobs", type=int, default=1, help="The number of processes.") |
|
|
|
args = parser.parse_args() |
|
|
|
metadata_df = pd.read_json(args.video_metadata_path, lines=True) |
|
video_path_list = metadata_df[args.video_path_column].tolist() |
|
video_path_list = [os.path.join(args.video_folder, video_path) for video_path in video_path_list] |
|
|
|
if not os.path.exists(args.saved_folder): |
|
os.makedirs(args.saved_folder, exist_ok=True) |
|
|
|
saved_path_list = [os.path.join(args.saved_folder, Path(video_path).stem + ".jsonl") for video_path in video_path_list] |
|
args_list = [ |
|
(video_path, saved_path) |
|
for video_path, saved_path in zip(video_path_list, saved_path_list) |
|
] |
|
|
|
|
|
with Pool(args.n_jobs) as pool: |
|
results = list(tqdm(pool.imap(cutscene_detection_star, args_list), total=len(video_path_list))) |
|
|