functionary-small-v3.2 / tokenization_functionary.py
khaimai's picture
Upload 2 files
3cc7cd4 verified
raw
history blame
19.7 kB
# Copyright (c) 2024, MeetKai Inc. All rights reserved.
from copy import deepcopy
import json
from typing import Any, Dict, List, Literal, Optional, Union
import jsonref
from pydantic import BaseModel, Field, model_validator
from typing_extensions import Self
from transformers.tokenization_utils_base import BatchEncoding
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import TensorType, logging
logger = logging.get_logger(__name__)
SYSTEM_PROMPT = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. The assistant calls functions with appropriate input when necessary"""
CODE_INTERPRETER_SYSTEM_PROMPT = """When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 60.0 seconds. The drive at '/mnt/data' can be used to save and persist user files."""
class Function(BaseModel):
name: str
description: Optional[str] = Field(default="")
parameters: Optional[dict] = None
class Tool(BaseModel):
type: Literal["function", "code_interpreter"]
function: Optional[Function] = None
@model_validator(mode="after")
def check_type_function_matches(self) -> Self:
if self.type == "function":
assert self.function is not None, '"function" must contain function description when `"type": "function"`'
else:
assert self.function is None, '"function" must not be provided when `"type": "code_interpreter"`'
return self
def convert_data_type(param_type: str) -> str:
"""convert data_type to typescript data type
Args:
param_type (str): param_type
Returns:
str: param type in typescript
"""
if param_type == "integer" or param_type == "float":
return "number"
return param_type
def get_param_type(param: Dict) -> str:
"""get param_type of parameter
Args:
param (Dict): param dict in properties
Returns:
str: _description_
"""
param_type = "any"
if "type" in param:
raw_param_type = param["type"]
if type(raw_param_type) is list:
param_type = " | ".join(raw_param_type)
else:
param_type = raw_param_type
else: # in many cases, the json schema contains: oneOf instead of "type"
if "oneOf" in param:
one_of_types = []
for item in param["oneOf"]:
if "type" in item:
one_of_types.append(convert_data_type(item["type"]))
one_of_types = list(set(one_of_types))
param_type = " | ".join(one_of_types)
return convert_data_type(param_type)
def get_format_param(param: Dict) -> Optional[str]:
"""Get "format" from param. There are cases where format is not directly in param but in oneOf
Args:
param (Dict): _description_
Returns:
Optional[str]: _description_
"""
if "format" in param:
return param["format"]
if "oneOf" in param:
formats = []
for item in param["oneOf"]:
if "format" in item:
formats.append(item["format"])
if len(formats) > 0:
return " or ".join(formats)
return None
def get_param_info(param: Dict) -> Optional[str]:
"""get additional information about parameter such as: format, default value, min, max, ...
Args:
param (Dict): _description_
Returns:
Optional[str]: _description_
"""
param_type = param.get("type", "any")
info_list = []
if "description" in param:
desc = param["description"]
if not desc.endswith("."):
desc += "."
info_list.append(desc)
if "default" in param:
default_value = param["default"]
if param_type == "string":
default_value = f'"{default_value}"' # if string --> add ""
info_list.append(f"Default={default_value}.")
format_param = get_format_param(param)
if format_param is not None:
info_list.append("Format=" + format_param)
for field, field_name in [
("maximum", "Maximum"),
("minimum", "Minimum"),
("maxLength", "Maximum length"),
("minLength", "Minimum length"),
]:
if field in param:
info_list.append(f"{field_name}=" + str(param[field]))
if len(info_list) > 0:
result = "// " + " ".join(info_list)
result = result.replace("\n", " ")
return result
return None
def append_new_param_info(
info_list: List[str],
param_declaration: str,
comment_info: Optional[str],
examples_info: List,
depth: int,
):
"""Append a new parameter with comment to the info_list
Args:
info_lines (List[str]): current info_list
param_declaration (str): param: type
comment_info (Optional[str]): information of comment
examples_info (List): information of examples given
depth (int): level of nested param
"""
offset = ""
if depth >= 1:
offset = "".join([" " for _ in range(depth)])
if comment_info is not None:
# if depth == 0: # format: //comment\nparam: type
info_list.append(f"{offset}{comment_info}")
if len(examples_info) > 0:
for example in examples_info:
info_list.append(f"{offset}{example}")
info_list.append(f"{offset}{param_declaration}")
# else: # format: param: type // comment
# info_list.append(f"{offset}{param_declaration} {comment_info}")
else:
info_list.append(f"{offset}{param_declaration}")
def get_examples_info(param_name: str, examples: List) -> List:
"""get information about examples provided
Args:
param_name (str): _description_
examples (List): _description_
Returns:
List: _description_
"""
examples_list = [f"// Example {param_name}:"]
for example in examples:
if isinstance(example, dict) or isinstance(example, list):
example_str = json.dumps(example, ensure_ascii=False).replace('\n', '\\n')
else:
example_str = str(example).replace('\n', '\\n')
examples_list.append(f"// {example_str}")
return examples_list
def get_enum_option_str(enum_options: List) -> str:
"""get enum option separated by: "|"
Args:
enum_options (List): list of options
Returns:
_type_: concatenation of options separated by "|"
"""
# if each option is string --> add quote
return " | ".join([f'"{v}"' if type(v) is str else str(v) for v in enum_options])
def get_array_typescript(
param_name: Optional[str], param_dic: dict, depth: int = 0
) -> str:
"""recursive implementation for generating type script of array
Args:
param_name (Optional[str]): name of param, optional
param_dic (dict): param_dic
depth (int, optional): nested level. Defaults to 0.
Returns:
_type_: typescript of array
"""
offset = ""
if depth >= 1:
offset = "".join([" " for _ in range(depth)])
items_info = param_dic.get("items", {})
if len(items_info) == 0:
if param_name is not None:
return f"{offset}{param_name}: []"
else:
return "[]"
array_type = get_param_type(items_info)
if array_type == "object":
info_lines = []
child_lines = get_parameter_typescript(
items_info.get("properties", {}), items_info.get("required", []), depth + 1
)
# if comment_info is not None:
# info_lines.append(f"{offset}{comment_info}")
if param_name is not None:
info_lines.append(f"{offset}{param_name}" + ": {")
else:
info_lines.append(f"{offset}" + "{")
info_lines.extend(child_lines)
info_lines.append(f"{offset}" + "}[]")
return "\n".join(info_lines)
elif array_type == "array":
item_info = get_array_typescript(None, items_info, depth + 1)
if param_name is None:
return f"{item_info}[]"
return f"{offset}{param_name}: {item_info.strip()}[]"
else:
if "enum" in items_info:
item_type = get_enum_option_str(items_info["enum"])
if param_name is None:
return f"({item_type})[]"
else:
return f"{offset}{param_name}: ({item_type})[]"
else:
if param_name is None:
return f"{array_type}[]"
else:
return f"{offset}{param_name}: {array_type}[],"
def get_parameter_typescript(properties, required_params, depth=0) -> List[str]:
"""Recursion, returning the information about parameters including data type, description and other information
These kinds of information will be put into the prompt
Args:
properties (_type_): properties in parameters
required_params (_type_): List of required parameters
depth (int, optional): the depth of params (nested level). Defaults to 0.
Returns:
_type_: list of lines containing information about all parameters
"""
tp_lines = []
for param_name, param in properties.items():
# Sometimes properties have "required" field as a list of string.
# Even though its supposed to be not under properties. So we skip it
if not isinstance(param, dict):
continue
# Param Description
comment_info = get_param_info(param)
# Param Examples
examples_info = []
if "examples" in param:
examples_info = get_examples_info(param_name, param["examples"])
# Param Name declaration
param_declaration = f"{param_name}"
if isinstance(required_params, list):
if param_name not in required_params:
param_declaration += "?"
param_type = get_param_type(param)
offset = ""
if depth >= 1:
offset = "".join([" " for _ in range(depth)])
if param_type == "object": # param_type is object
child_lines = get_parameter_typescript(
param.get("properties", {}), param.get("required", []), depth + 1
)
if comment_info is not None:
tp_lines.append(f"{offset}{comment_info}")
if len(examples_info) > 0:
for example in examples_info:
tp_lines.append(f"{offset}{example}")
param_declaration += ": {"
tp_lines.append(f"{offset}{param_declaration}")
tp_lines.extend(child_lines)
tp_lines.append(f"{offset}" + "},")
elif param_type == "array": # param_type is an array
item_info = param.get("items", {})
if "type" not in item_info: # don't know type of array
param_declaration += ": [],"
append_new_param_info(
tp_lines, param_declaration, comment_info, examples_info, depth
)
else:
array_declaration = get_array_typescript(
param_declaration, param, depth
)
if not array_declaration.endswith(","):
array_declaration += ","
if comment_info is not None:
tp_lines.append(f"{offset}{comment_info}")
if len(examples_info) > 0:
for example in examples_info:
tp_lines.append(f"{offset}{example}")
tp_lines.append(array_declaration)
else:
if "enum" in param:
param_type = get_enum_option_str(param["enum"])
# param_type = " | ".join([f'"{v}"' for v in param["enum"]])
if "nullable" in param and param["nullable"] is True:
param_type += " | null"
param_declaration += f": {param_type},"
append_new_param_info(
tp_lines, param_declaration, comment_info, examples_info, depth
)
return tp_lines
def generate_schema_from_functions(
functions: List[Function], namespace="functions"
) -> str:
"""
Convert functions schema to a schema that language models can understand.
"""
schema = "// Supported function definitions that should be called when necessary.\n"
schema += f"namespace {namespace} {{\n\n"
for function in functions:
# Convert a Function object to dict, if necessary
if not isinstance(function, dict):
function = function.model_dump()
function_name = function.get("name", None)
if function_name is None:
continue
description = function.get("description", "")
schema += f"// {description}\n"
schema += f"type {function_name}"
parameters = function.get("parameters", None)
if parameters is not None and parameters.get("properties") is not None:
parameters = deepcopy(jsonref.JsonRef.replace_refs(parameters))
schema += " = (_: {\n"
required_params = parameters.get("required", [])
tp_lines = get_parameter_typescript(
parameters.get("properties"),
required_params,
0,
)
schema += "\n".join(tp_lines)
schema += "\n}) => any;\n\n"
else:
# Doesn't have any parameters
schema += " = () => any;\n\n"
schema += f"}} // namespace {namespace}"
return schema
class FunctionaryTokenizer(PreTrainedTokenizerFast):
def apply_chat_template(
self,
conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], str],
tools: Optional[List[Dict[str, Any]]],
chat_template: Optional[str] = None,
add_generation_prompt: bool = False,
tokenize: bool = True,
padding: bool = False,
truncation: bool = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_dict: bool = False,
tokenizer_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]:
if return_dict and not tokenize:
raise ValueError(
"`return_dict=True` is incompatible with `tokenize=False`, because there is no dict "
"of tokenizer outputs to return."
)
if tokenizer_kwargs is None:
tokenizer_kwargs = {}
using_default_template = False
# First, handle the cases when the model has a dict of multiple templates
if isinstance(self.chat_template, dict) or (
self.chat_template is None and isinstance(self.default_chat_template, dict)
):
if self.chat_template is not None:
template_dict = self.chat_template
using_default_dict = False
else:
template_dict = self.default_chat_template
using_default_dict = True
if chat_template is not None and chat_template in template_dict:
# The user can pass the name of a template to the chat template argument instead of an entire template
chat_template = template_dict[chat_template]
if using_default_dict:
using_default_template = True
elif chat_template is None and "default" in template_dict:
chat_template = template_dict["default"]
if using_default_dict:
using_default_template = True
elif chat_template is None:
raise ValueError(
"This model has multiple chat templates with no default specified! Please either pass a chat "
"template or the name of the template you wish to use to the `chat_template` argument. Available "
f"template names are {sorted(template_dict.keys())}."
)
elif chat_template is None:
# These are the cases when the model has a single template
# priority: `chat_template` argument > `tokenizer.chat_template` > `tokenizer.default_chat_template
if self.chat_template is not None:
chat_template = self.chat_template
else:
chat_template = self.default_chat_template
using_default_template = True
if using_default_template:
logger.warning_once(
"No chat template is set for this tokenizer, falling back to a default class-level template. This is "
"very error-prone, because models are often trained with templates different from the class default! "
"Default chat templates are a legacy feature and will be removed in Transformers v4.43, at which "
"point any code depending on them will stop working. We recommend setting a valid chat template before "
"then to ensure that this model continues working without issues."
)
# Prepare tools/functions into schema
functions_pydantic_to_render = []
has_code_interpreter = False
for i in range(len(tools)):
tool_pydantic = Tool.model_validate(tools[i])
if tool_pydantic.type == "function":
functions_pydantic_to_render.append(tool_pydantic.function)
else:
has_code_interpreter = True
conversation.insert(0, {"role": "system", "content": generate_schema_from_functions(functions_pydantic_to_render)})
# Insert system prompt
system_prompt_to_use = SYSTEM_PROMPT if not has_code_interpreter else CODE_INTERPRETER_SYSTEM_PROMPT
conversation.insert(1, {"role": "system", "content": system_prompt_to_use})
# Compilation function uses a cache to avoid recompiling the same template
compiled_template = self._compile_jinja_template(chat_template)
if isinstance(conversation, (list, tuple)) and (
isinstance(conversation[0], (list, tuple)) or hasattr(conversation[0], "messages")
):
conversations = conversation
is_batched = True
else:
conversations = [conversation]
is_batched = False
rendered = []
template_kwargs = {**self.special_tokens_map, **kwargs} # kwargs overwrite special tokens if both are present
for chat in conversations:
if hasattr(chat, "messages"):
# Indicates it's a Conversation object
chat = chat.messages
rendered_chat = compiled_template.render(
messages=chat, add_generation_prompt=add_generation_prompt, **template_kwargs
)
rendered.append(rendered_chat)
if not is_batched:
rendered = rendered[0]
if tokenize:
out = self(
rendered,
padding=padding,
truncation=truncation,
max_length=max_length,
add_special_tokens=False,
return_tensors=return_tensors,
**tokenizer_kwargs,
)
if return_dict:
return out
else:
return out["input_ids"]
else:
return rendered