--- library_name: peft base_model: Intel/neural-chat-7b-v3-1 --- # Model Card for Model ID Text Completion ## Model Details ### Model Description - **Developed by:** Rais Kazi - **Model type:** Fine-Tuned - **License:** Apache - **Finetuned from model [optional]:** Intel/neural-chat-7b-v3-1 ## Sample Code to call this model import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import BitsAndBytesConfig peft_model_id = "meetrais/finetuned-neural-chat-7b-v3-1" config = PeftConfig.from_pretrained(peft_model_id) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained(peft_model_id, quantization_config=bnb_config, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) if tokenizer.pad_token is None: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) text = "Capital of USA is" device = "cuda:0" inputs = tokenizer(text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_new_tokens=30) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.2.dev0