File size: 1,876 Bytes
81d5037
515525a
 
 
1bd3278
 
515525a
 
1bd3278
 
515525a
 
 
 
 
1bd3278
515525a
 
 
 
 
 
 
1bd3278
515525a
1bd3278
81d5037
 
515525a
 
81d5037
515525a
81d5037
515525a
 
 
 
81d5037
515525a
81d5037
515525a
81d5037
515525a
81d5037
515525a
81d5037
515525a
81d5037
515525a
81d5037
515525a
81d5037
515525a
81d5037
515525a
 
 
 
 
 
 
 
 
 
 
 
81d5037
515525a
81d5037
515525a
 
 
81d5037
 
515525a
81d5037
515525a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
base_model: facebook/w2v-bert-2.0
datasets:
- common_voice_16_0
library_name: transformers
license: mit
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: w2v-bert-2.0-mongolian-colab-CV16.0
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: common_voice_16_0
      type: common_voice_16_0
      config: mn
      split: test
      args: mn
    metrics:
    - type: wer
      value: 0.5182727865999565
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-mongolian-colab-CV16.0

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6866
- Wer: 0.5183

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.8436        | 5.2174 | 300  | 0.6866          | 0.5183 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1