Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: openai/whisper-large-v3-turbo
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- fsicoli/common_voice_18_0
|
9 |
+
metrics:
|
10 |
+
- wer
|
11 |
+
model-index:
|
12 |
+
- name: Whisper Turbo Train
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Automatic Speech Recognition
|
16 |
+
type: automatic-speech-recognition
|
17 |
+
dataset:
|
18 |
+
name: Common Voice 18.0
|
19 |
+
type: fsicoli/common_voice_18_0
|
20 |
+
split: None
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 15.246076710047603
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# Whisper Turbo Train
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Common Voice 18.0 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.1156
|
35 |
+
- Wer: 15.2461
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 1e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 32
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_steps: 1000
|
61 |
+
- training_steps: 8000
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
67 |
+
|:-------------:|:------:|:----:|:---------------:|:-------:|
|
68 |
+
| 0.3715 | 0.4257 | 1000 | 0.3457 | 40.4692 |
|
69 |
+
| 0.251 | 0.8514 | 2000 | 0.2181 | 27.7065 |
|
70 |
+
| 0.1569 | 1.2771 | 3000 | 0.1814 | 24.1533 |
|
71 |
+
| 0.1436 | 1.7029 | 4000 | 0.1531 | 20.3812 |
|
72 |
+
| 0.0931 | 2.1286 | 5000 | 0.1374 | 18.4662 |
|
73 |
+
| 0.0891 | 2.5543 | 6000 | 0.1252 | 16.9349 |
|
74 |
+
| 0.0738 | 2.9800 | 7000 | 0.1199 | 15.5610 |
|
75 |
+
| 0.0544 | 3.4057 | 8000 | 0.1156 | 15.2461 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.45.1
|
81 |
+
- Pytorch 2.1.0
|
82 |
+
- Datasets 3.0.1
|
83 |
+
- Tokenizers 0.20.0
|