File size: 2,093 Bytes
e5e27a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: opus-mt-en-es-finetuned-es-to-maq
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# opus-mt-en-es-finetuned-es-to-maq

This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-es](https://huggingface.co/Helsinki-NLP/opus-mt-en-es) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7414
- Bleu: 6.663
- Gen Len: 94.437

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu   | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| No log        | 1.0   | 199  | 2.3505          | 2.7386 | 127.0327 |
| No log        | 2.0   | 398  | 2.0862          | 4.4403 | 97.3489  |
| 2.643         | 3.0   | 597  | 1.9576          | 5.2104 | 98.7116  |
| 2.643         | 4.0   | 796  | 1.8831          | 5.4016 | 98.4962  |
| 2.643         | 5.0   | 995  | 1.8320          | 5.6026 | 96.1826  |
| 1.9678        | 6.0   | 1194 | 1.7944          | 6.374  | 95.1398  |
| 1.9678        | 7.0   | 1393 | 1.7726          | 6.514  | 94.83    |
| 1.8281        | 8.0   | 1592 | 1.7551          | 6.7802 | 95.194   |
| 1.8281        | 9.0   | 1791 | 1.7451          | 6.7625 | 94.2091  |
| 1.8281        | 10.0  | 1990 | 1.7414          | 6.663  | 94.437   |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3