File size: 2,094 Bytes
4205c90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: opus-mt-en-es-finetuned-es-to-maz
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# opus-mt-en-es-finetuned-es-to-maz

This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-es](https://huggingface.co/Helsinki-NLP/opus-mt-en-es) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6048
- Bleu: 4.3691
- Gen Len: 90.628

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu   | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| No log        | 1.0   | 197  | 2.2612          | 1.6643 | 112.3057 |
| No log        | 2.0   | 394  | 1.9432          | 2.2102 | 95.5885  |
| 2.5492        | 3.0   | 591  | 1.8172          | 2.8502 | 95.6293  |
| 2.5492        | 4.0   | 788  | 1.7422          | 3.156  | 92.9006  |
| 2.5492        | 5.0   | 985  | 1.6962          | 3.2496 | 91.9032  |
| 1.8541        | 6.0   | 1182 | 1.6573          | 3.6696 | 91.0064  |
| 1.8541        | 7.0   | 1379 | 1.6345          | 3.8424 | 90.5987  |
| 1.7136        | 8.0   | 1576 | 1.6158          | 4.0247 | 91.6229  |
| 1.7136        | 9.0   | 1773 | 1.6077          | 4.2614 | 89.265   |
| 1.7136        | 10.0  | 1970 | 1.6048          | 4.3691 | 90.628   |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3