File size: 2,094 Bytes
4205c90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: opus-mt-en-es-finetuned-es-to-maz
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-en-es-finetuned-es-to-maz
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-es](https://huggingface.co/Helsinki-NLP/opus-mt-en-es) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6048
- Bleu: 4.3691
- Gen Len: 90.628
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
| No log | 1.0 | 197 | 2.2612 | 1.6643 | 112.3057 |
| No log | 2.0 | 394 | 1.9432 | 2.2102 | 95.5885 |
| 2.5492 | 3.0 | 591 | 1.8172 | 2.8502 | 95.6293 |
| 2.5492 | 4.0 | 788 | 1.7422 | 3.156 | 92.9006 |
| 2.5492 | 5.0 | 985 | 1.6962 | 3.2496 | 91.9032 |
| 1.8541 | 6.0 | 1182 | 1.6573 | 3.6696 | 91.0064 |
| 1.8541 | 7.0 | 1379 | 1.6345 | 3.8424 | 90.5987 |
| 1.7136 | 8.0 | 1576 | 1.6158 | 4.0247 | 91.6229 |
| 1.7136 | 9.0 | 1773 | 1.6077 | 4.2614 | 89.265 |
| 1.7136 | 10.0 | 1970 | 1.6048 | 4.3691 | 90.628 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|