File size: 2,188 Bytes
a1c3178 34c6a12 a1c3178 34c6a12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-tr-news
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-tr-news
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3748
- Rouge1: 25.2124
- Rouge2: 13.3894
- Rougel: 22.4063
- Rougelsum: 22.9668
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 5.5375 | 1.0 | 875 | 2.5866 | 22.5826 | 11.7162 | 19.8221 | 20.1884 |
| 3.3129 | 2.0 | 1750 | 2.5237 | 23.8445 | 12.7539 | 21.3485 | 21.7204 |
| 3.0876 | 3.0 | 2625 | 2.4728 | 24.1288 | 12.5373 | 21.4068 | 21.8723 |
| 2.9685 | 4.0 | 3500 | 2.4348 | 25.3884 | 13.3569 | 22.5336 | 23.0989 |
| 2.8886 | 5.0 | 4375 | 2.4043 | 25.5798 | 13.7628 | 22.7085 | 23.2025 |
| 2.836 | 6.0 | 5250 | 2.3813 | 24.93 | 13.2058 | 22.2455 | 22.6959 |
| 2.8069 | 7.0 | 6125 | 2.3800 | 24.8104 | 12.9556 | 22.1114 | 22.6108 |
| 2.7813 | 8.0 | 7000 | 2.3748 | 25.2124 | 13.3894 | 22.4063 | 22.9668 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1
|