mertyazan's picture
Landing is done!
b3f8c34
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a13a0e670>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a13a0e700>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a13a0e790>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a13a0e820>",
"_build": "<function ActorCriticPolicy._build at 0x7f3a13a0e8b0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f3a13a0e940>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3a13a0e9d0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a13a0ea60>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f3a13a0eaf0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a13a0eb80>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a13a0ec10>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a13a0eca0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f3a13a087e0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1673797990218969290,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2GHzzDzWS6LiInupA5MrY4ggW794RBOQAAgD8AAIA/AOh0PXtGirpKKOk6d7PrNRLEsTrdLgW6AACAPwAAgD8a4yI9FASCutpAoDuNMrA2EZ6tumr+uroAAIA/AACAP/N4tD0pDBG67nBMu39cn7bA5PQ6ymVuOgAAgD8AAIA/mo6lPRn2fz4T5py9O5YtvnMUPT0QyvK9AAAAAAAAAADNYU69zt6oP6N+8rox3oO+HqfovSMZhrsAAAAAAAAAAJN3Dj7rm3Q/c3LGPNnOdr4gbFE9ZE2hvAAAAAAAAAAAGukjPdzDoD8m9S8+1WGLvkinmzwlqB49AAAAAAAAAAD196S+1A2PP3mOs7zbY2m+OItHvrq3Yj0AAAAAAAAAAICRbT3DYX+62T0ivFJB+DUFE5M6tr1atQAAgD8AAIA/zbzcPQl8bj1Qizc5dk1Svu/2MT0tm188AAAAAAAAAAAAWhs9SNObutJuPDqcKWw10Ig+OSggVrkAAIA/AACAP4D+LT3D6Qy6xWEUucLgGbThdas6usMpOAAAgD8AAIA/Zvb4Ow8RCz7oye894WNPvn5eaD10t6e8AAAAAAAAAADNJQk9D5CPP54ntD19wmi+GvQsPN+fpjwAAAAAAAAAAJ3myj5MOoc/kiDMPrC66b66N64+boXCuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHvmDgWdaZUCUhpRSlIwBbJRN6AOMAXSUR0CaQZPva11GdX2UKGgGaAloD0MI2lNyTuz7ZECUhpRSlGgVTegDaBZHQJpBlN21Ul11fZQoaAZoCWgPQwhzS6sh8Y9hQJSGlFKUaBVN6ANoFkdAmkNWTTvy9XV9lChoBmgJaA9DCIZZaOc0i2FAlIaUUpRoFU3oA2gWR0CaSfradtl7dX2UKGgGaAloD0MI+YOB5974ZkCUhpRSlGgVTegDaBZHQJpP/e2uxKR1fZQoaAZoCWgPQwjSb18HTn5jQJSGlFKUaBVN6ANoFkdAmlj/tQbdanV9lChoBmgJaA9DCHoX78ftaVtAlIaUUpRoFU3oA2gWR0CaY5bQC0WudX2UKGgGaAloD0MIob/QI8b8YUCUhpRSlGgVTegDaBZHQJp2ouTRplB1fZQoaAZoCWgPQwhEqFKzB6thQJSGlFKUaBVN6ANoFkdAmnmcyvcJt3V9lChoBmgJaA9DCCv6QzNP9GBAlIaUUpRoFU3oA2gWR0Caet80UGmldX2UKGgGaAloD0MIWp9yTJY6YECUhpRSlGgVTegDaBZHQJp7UYWLxZx1fZQoaAZoCWgPQwhI+rSKfghjQJSGlFKUaBVN6ANoFkdAmoGY150KZ3V9lChoBmgJaA9DCKWg20uaC2JAlIaUUpRoFU3oA2gWR0Cagppi7TUidX2UKGgGaAloD0MI9bwbCwqcZECUhpRSlGgVTegDaBZHQJqEiy8jAzp1fZQoaAZoCWgPQwia0vpbAgtjQJSGlFKUaBVN6ANoFkdAmqGC48U21nV9lChoBmgJaA9DCDmZuFUQUl5AlIaUUpRoFU3oA2gWR0CaojkxREWqdX2UKGgGaAloD0MIhPI+juYkXUCUhpRSlGgVTegDaBZHQJqkInUlRgt1fZQoaAZoCWgPQwjpZKn1/ndlQJSGlFKUaBVN6ANoFkdAmqQjZlFtsXV9lChoBmgJaA9DCAwDllzFh2NAlIaUUpRoFU3oA2gWR0CapiLk0aZQdX2UKGgGaAloD0MIevtz0RAqYkCUhpRSlGgVTegDaBZHQJqsqOdXko51fZQoaAZoCWgPQwg75dGNMF1hQJSGlFKUaBVN6ANoFkdAmrLDc2zfJnV9lChoBmgJaA9DCDPhl/r50WZAlIaUUpRoFU3oA2gWR0CavAg/TspodX2UKGgGaAloD0MIqdxELc02YUCUhpRSlGgVTegDaBZHQJrGseq7yx11fZQoaAZoCWgPQwjj/iPToWBiQJSGlFKUaBVN6ANoFkdAmtn/uCwr2HV9lChoBmgJaA9DCBCwVu2ah1VAlIaUUpRoFU3oA2gWR0Ca3Suy/sVtdX2UKGgGaAloD0MISIszhrl2ZECUhpRSlGgVTegDaBZHQJregJIDoyN1fZQoaAZoCWgPQwjxEMZP4+5hQJSGlFKUaBVN6ANoFkdAmt787p3X7XV9lChoBmgJaA9DCOpdvB83SmFAlIaUUpRoFU3oA2gWR0Ca5cwxWT5gdX2UKGgGaAloD0MI5nYv98myYUCUhpRSlGgVTegDaBZHQJrm/5VOsT51fZQoaAZoCWgPQwj6m1CIACliQJSGlFKUaBVN6ANoFkdAmulRDCxeLXV9lChoBmgJaA9DCLH5uDZU8mFAlIaUUpRoFU3oA2gWR0CbBsthuwX7dX2UKGgGaAloD0MIveDTnDziYUCUhpRSlGgVTegDaBZHQJsHmZc9nsd1fZQoaAZoCWgPQwg1e6AVGHtbQJSGlFKUaBVN6ANoFkdAmwmRakhzNnV9lChoBmgJaA9DCEsFFVU/imZAlIaUUpRoFU3oA2gWR0CbCZMLncL0dX2UKGgGaAloD0MI/RUyV4YEYkCUhpRSlGgVTegDaBZHQJsLiF7D2rZ1fZQoaAZoCWgPQwhDkIMSZopcQJSGlFKUaBVN6ANoFkdAmxKaouPFN3V9lChoBmgJaA9DCCO8PQgB/19AlIaUUpRoFU3oA2gWR0CbGOc4YJmedX2UKGgGaAloD0MIeXWOAdl8XECUhpRSlGgVTegDaBZHQJsjT0RODap1fZQoaAZoCWgPQwjW/PhLCypkQJSGlFKUaBVN6ANoFkdAmy5e23KB/nV9lChoBmgJaA9DCD9SRIbVVGJAlIaUUpRoFU3oA2gWR0CbQkhUzbeudX2UKGgGaAloD0MIl6lJ8IZ/X0CUhpRSlGgVTegDaBZHQJtFjuPV/c51fZQoaAZoCWgPQwgYQWMm0WZiQJSGlFKUaBVN6ANoFkdAm0cAqI7/43V9lChoBmgJaA9DCH8TChFwd1xAlIaUUpRoFU3oA2gWR0CbR4iiZfD2dX2UKGgGaAloD0MICAPPvYf3Y0CUhpRSlGgVTegDaBZHQJtN17fHggp1fZQoaAZoCWgPQwgN4C2QIJBkQJSGlFKUaBVN6ANoFkdAm07eW4Vh1HV9lChoBmgJaA9DCJ8561OOTWNAlIaUUpRoFU3oA2gWR0CbUNeLNwBHdX2UKGgGaAloD0MItW6D2u8bZUCUhpRSlGgVTegDaBZHQJtYV2U0Nz91fZQoaAZoCWgPQwihaYmV0RJiQJSGlFKUaBVN6ANoFkdAm1kLSuyNXHV9lChoBmgJaA9DCJrtCn2wkkNAlIaUUpRoFU0PAWgWR0CbbuTc6/7BdX2UKGgGaAloD0MIrws/OJ9vYECUhpRSlGgVTegDaBZHQJtvmXRgJC11fZQoaAZoCWgPQwi2EU92s/1hQJSGlFKUaBVN6ANoFkdAm2+ZrP+n63V9lChoBmgJaA9DCFcnZyjuKmBAlIaUUpRoFU3oA2gWR0CbcScFyJbddX2UKGgGaAloD0MIlQuVf61DZECUhpRSlGgVTegDaBZHQJt3VsQ/X5F1fZQoaAZoCWgPQwj03EJXIgVhQJSGlFKUaBVN6ANoFkdAm30OPzWf9XV9lChoBmgJaA9DCDp6/N4mMWNAlIaUUpRoFU3oA2gWR0Cbhb1GLDQ7dX2UKGgGaAloD0MItVAyOTW8YkCUhpRSlGgVTegDaBZHQJuPQc6vJRx1fZQoaAZoCWgPQwh4KuCe575mQJSGlFKUaBVN6ANoFkdAm6GHJ9y93HV9lChoBmgJaA9DCOBIoMEm1mNAlIaUUpRoFU3oA2gWR0CbpJ7FKkEcdX2UKGgGaAloD0MIRIoBEk0iYkCUhpRSlGgVTegDaBZHQJul+2fChvl1fZQoaAZoCWgPQwjoFU89UtRlQJSGlFKUaBVN6ANoFkdAm61I+B6KL3V9lChoBmgJaA9DCKVN1T2yNmJAlIaUUpRoFU3oA2gWR0Cbrlr0J4SpdX2UKGgGaAloD0MI3/jaM8sjYUCUhpRSlGgVTegDaBZHQJuwhs/IKdB1fZQoaAZoCWgPQwj+tbxyPeRmQJSGlFKUaBVN6ANoFkdAm7isYMvysnV9lChoBmgJaA9DCEUNpmH4HGVAlIaUUpRoFU3oA2gWR0CbuWRZ2ZAqdX2UKGgGaAloD0MID5iHTHkuYkCUhpRSlGgVTegDaBZHQJu6bxusLfF1fZQoaAZoCWgPQwj5npEIjRdaQJSGlFKUaBVN6ANoFkdAm7solQdjonV9lChoBmgJaA9DCJg1scBXQWNAlIaUUpRoFU3oA2gWR0CbuymGucMFdX2UKGgGaAloD0MIequuQ7VcYUCUhpRSlGgVTegDaBZHQJvRnaxoqTd1fZQoaAZoCWgPQwjDf7qBgrFkQJSGlFKUaBVN6ANoFkdAm9dnWWhRInV9lChoBmgJaA9DCGZK628JGGJAlIaUUpRoFU3oA2gWR0Cb3PPxx1gZdX2UKGgGaAloD0MI9n04SIhyZUCUhpRSlGgVTegDaBZHQJvlp3EAHVx1fZQoaAZoCWgPQwhTWKmgIu9kQJSGlFKUaBVN6ANoFkdAm+/HJHRTj3V9lChoBmgJaA9DCOsAiLv6EmNAlIaUUpRoFU3oA2gWR0CcAJqJdjXndX2UKGgGaAloD0MI5Uf8irXdZkCUhpRSlGgVTegDaBZHQJwDRikO7QN1fZQoaAZoCWgPQwibrie6rnFmQJSGlFKUaBVN6ANoFkdAnASGfK6nSHV9lChoBmgJaA9DCLn98smK/WJAlIaUUpRoFU3oA2gWR0CcCvUWEbo9dX2UKGgGaAloD0MIfgBSm7gmYkCUhpRSlGgVTegDaBZHQJwMAA2hqTN1fZQoaAZoCWgPQwjBbti2qPVkQJSGlFKUaBVN6ANoFkdAnA4F5GBnSXV9lChoBmgJaA9DCPPixFc7EmRAlIaUUpRoFU3oA2gWR0CcFqwCKaXsdX2UKGgGaAloD0MIdcqjG+FyYkCUhpRSlGgVTegDaBZHQJwXbsXzlLh1fZQoaAZoCWgPQwjp1mt6UPFfQJSGlFKUaBVN6ANoFkdAnBiS/bj943V9lChoBmgJaA9DCOny5nAt9mVAlIaUUpRoFU3oA2gWR0CcGWVWjoIOdX2UKGgGaAloD0MI6x1uhwbmY0CUhpRSlGgVTegDaBZHQJwZZaxHG0h1fZQoaAZoCWgPQwhwmj474MtaQJSGlFKUaBVN6ANoFkdAnDAWcz67/XV9lChoBmgJaA9DCDKs4o3MrmJAlIaUUpRoFU3oA2gWR0CcNilRxcVydX2UKGgGaAloD0MINNb+zvbCYECUhpRSlGgVTegDaBZHQJw71urIYFd1fZQoaAZoCWgPQwiyYrg6ADRfQJSGlFKUaBVN6ANoFkdAnERpsfq5b3V9lChoBmgJaA9DCKkSZW8p4WNAlIaUUpRoFU3oA2gWR0CcTaG8mKIjdX2UKGgGaAloD0MI/89hvryzYUCUhpRSlGgVTegDaBZHQJxd4JJGvwF1fZQoaAZoCWgPQwiEK6BQT/1cQJSGlFKUaBVN6ANoFkdAnGCrKRuCPXV9lChoBmgJaA9DCDlCBvJsn2NAlIaUUpRoFU3oA2gWR0CcYcvRZ2ZBdX2UKGgGaAloD0MIiEm4kEd7ZUCUhpRSlGgVTegDaBZHQJxn8+3Ytg91fZQoaAZoCWgPQwj430p2bEpeQJSGlFKUaBVN6ANoFkdAnGjZs0pEyHV9lChoBmgJaA9DCPKWqx+bxWZAlIaUUpRoFU3oA2gWR0CcapizLOiWdX2UKGgGaAloD0MItYe9UMByZkCUhpRSlGgVTegDaBZHQJxx1whnrY51fZQoaAZoCWgPQwggRgiPtphlQJSGlFKUaBVN6ANoFkdAnHKIVARkE3V9lChoBmgJaA9DCFjjbDqCu2VAlIaUUpRoFU3oA2gWR0Ccc6D2alUIdX2UKGgGaAloD0MIArnEkYcSYkCUhpRSlGgVTegDaBZHQJx0T8m8dxR1fZQoaAZoCWgPQwhd34eDhLVeQJSGlFKUaBVN6ANoFkdAnHRPwiJO33V9lChoBmgJaA9DCLq8OVyrSGNAlIaUUpRoFU3oA2gWR0CcdcVQAMlUdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}