--- language: - ms --- # MaLLaM 🌙 1.1B (Malaysia Large Language Model), Pretrain 1.1B 4096 context length on Malaysian text Pretrain from scratch 1.1B parameters using Mistral architecture on 90B Malaysian text tokens. README at https://github.com/mesolitica/malaya/tree/5.1/pretrained-model/mistral - Trained on 90B tokens, gathered at https://github.com/malaysia-ai/dedup-text-dataset/tree/main/pretrain-llm - We use Ray cluster to train on 5 nodes of 4x A100 80GB, https://github.com/malaysia-ai/jupyter-gpu/tree/main/ray WandB, https://wandb.ai/mesolitica/pretrain-mistral-1.1b?workspace=user-husein-mesolitica WandB report, https://wandb.ai/mesolitica/pretrain-mistral-3b/reports/Pretrain-Larger-Malaysian-Mistral--Vmlldzo2MDkyOTgz Technical report, https://github.com/mesolitica/malaya/wiki/MaLLaM-%F0%9F%8C%99-Malaysia-Large-Language-Model ## how-to ```python from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig import torch TORCH_DTYPE = 'bfloat16' nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type='nf4', bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=getattr(torch, TORCH_DTYPE) ) tokenizer = AutoTokenizer.from_pretrained('mesolitica/mallam-1.1B-4096') model = AutoModelForCausalLM.from_pretrained( 'mesolitica/mallam-1.1B-4096', use_flash_attention_2 = True, quantization_config = nf4_config ) prompt = 'nama saya' inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda') generate_kwargs = dict( inputs, max_new_tokens=512, top_p=0.95, top_k=50, temperature=0.9, do_sample=True, num_beams=1, repetition_penalty=1.05, ) r = model.generate(**generate_kwargs) ```