from transformers import AutoTokenizer, AutoModel import torch max_seq_length=128 model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2") model.eval() inputs = {"input_ids": torch.ones(1, max_seq_length, dtype=torch.int64), "attention_mask": torch.ones(1, max_seq_length, dtype=torch.int64), "token_type_ids": torch.ones(1, max_seq_length, dtype=torch.int64)} symbolic_names = {0: 'batch_size', 1: 'max_seq_len'} torch.onnx.export(model, args=tuple(inputs.values()), f='pytorch_model.onnx', export_params=True, input_names=['input_ids', 'attention_mask', 'token_type_ids'], output_names=['output'], dynamic_axes={'input_ids': symbolic_names, 'attention_mask': symbolic_names, 'token_type_ids': symbolic_names})