File size: 9,360 Bytes
1976a91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# inference handler for huggingface
import os
import sys
import time
import importlib
import signal
import re
from typing import Dict, List, Any
# from fastapi import FastAPI
# from fastapi.middleware.cors import CORSMiddleware
# from fastapi.middleware.gzip import GZipMiddleware
from packaging import version

import logging
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())

from modules import errors
from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call

import torch

# Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors
if ".dev" in torch.__version__ or "+git" in torch.__version__:
    torch.__long_version__ = torch.__version__
    torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)

from modules import shared, devices, ui_tempdir
import modules.codeformer_model as codeformer
import modules.face_restoration
import modules.gfpgan_model as gfpgan
import modules.img2img

import modules.lowvram
import modules.paths
import modules.scripts
import modules.sd_hijack
import modules.sd_models
import modules.sd_vae
import modules.txt2img
import modules.script_callbacks
import modules.textual_inversion.textual_inversion
import modules.progress

import modules.ui
from modules import modelloader
from modules.shared import cmd_opts, opts
import modules.hypernetworks.hypernetwork

from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
import base64
import io
from fastapi import HTTPException
from io import BytesIO
import piexif
import piexif.helper
from PIL import PngImagePlugin,Image


def initialize():
    # check_versions()

    # extensions.list_extensions()
    # localization.list_localizations(cmd_opts.localizations_dir)

    # if cmd_opts.ui_debug_mode:
    #     shared.sd_upscalers = upscaler.UpscalerLanczos().scalers
    #     modules.scripts.load_scripts()
    #     return

    modelloader.cleanup_models()
    modules.sd_models.setup_model()
    codeformer.setup_model(cmd_opts.codeformer_models_path)
    gfpgan.setup_model(cmd_opts.gfpgan_models_path)

    modelloader.list_builtin_upscalers()
    # modules.scripts.load_scripts()
    modelloader.load_upscalers()

    modules.sd_vae.refresh_vae_list()

    # modules.textual_inversion.textual_inversion.list_textual_inversion_templates()

    try:
        modules.sd_models.load_model()
    except Exception as e:
        errors.display(e, "loading stable diffusion model")
        print("", file=sys.stderr)
        print("Stable diffusion model failed to load, exiting", file=sys.stderr)
        exit(1)

    shared.opts.data["sd_model_checkpoint"] = shared.sd_model.sd_checkpoint_info.title

    shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
    shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
    shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
    shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)

    # shared.reload_hypernetworks()

    # ui_extra_networks.intialize()
    # ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion())
    # ui_extra_networks.register_page(ui_extra_networks_hypernets.ExtraNetworksPageHypernetworks())
    # ui_extra_networks.register_page(ui_extra_networks_checkpoints.ExtraNetworksPageCheckpoints())

    # extra_networks.initialize()
    # extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet())

    # if cmd_opts.tls_keyfile is not None and cmd_opts.tls_keyfile is not None:

    #     try:
    #         if not os.path.exists(cmd_opts.tls_keyfile):
    #             print("Invalid path to TLS keyfile given")
    #         if not os.path.exists(cmd_opts.tls_certfile):
    #             print(f"Invalid path to TLS certfile: '{cmd_opts.tls_certfile}'")
    #     except TypeError:
    #         cmd_opts.tls_keyfile = cmd_opts.tls_certfile = None
    #         print("TLS setup invalid, running webui without TLS")
    #     else:
    #         print("Running with TLS")

    # make the program just exit at ctrl+c without waiting for anything
    def sigint_handler(sig, frame):
        print(f'Interrupted with signal {sig} in {frame}')
        os._exit(0)

    signal.signal(signal.SIGINT, sigint_handler)


class EndpointHandler():
    def __init__(self, path=""):
        # Preload all the elements you are going to need at inference.
        # pseudo:
        # self.model= load_model(path)
        initialize()
        self.shared = shared

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
        data args:
            inputs (:obj: `str` | `PIL.Image` | `np.array`)
            kwargs
        Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """
        args = {
            "do_not_save_samples": True,
            "do_not_save_grid": True,
            "outpath_samples": "./output",
            "prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer",
            "negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, 3hands,4fingers,3arms, bad anatomy, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts,poorly drawn face,mutation,deformed",
            "sampler_name": "DPM++ SDE Karras",
            "steps": 20, # 25
            "cfg_scale": 8,
            "width": 512,
            "height": 768,
            "seed": -1,
        }
        if data["inputs"]:
             if "prompt" in data["inputs"].keys():
                prompt = data["inputs"]["prompt"]
                print("get prompt from request: ", prompt)
                args["prompt"] = prompt
        p = StableDiffusionProcessingTxt2Img(sd_model=self.shared.sd_model, **args)
        processed = process_images(p)
        single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8')
        return {
            "img_data": single_image_b64,
            "parameters": processed.images[0].info.get('parameters', ""),
        }


def manual_hack():
    initialize()
    args = {
        # todo: don't output res
        "outpath_samples": "C:\\Users\\wolvz\\Desktop",
        "prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer",
        "negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans",
        "sampler_name": "DPM++ SDE Karras",
        "steps": 20, # 25
        "cfg_scale": 8,
        "width": 512,
        "height": 768,
        "seed": -1,
    }
    p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
    processed = process_images(p)


def decode_base64_to_image(encoding):
    if encoding.startswith("data:image/"):
        encoding = encoding.split(";")[1].split(",")[1]
    try:
        image = Image.open(BytesIO(base64.b64decode(encoding)))
        return image
    except Exception as err:
        raise HTTPException(status_code=500, detail="Invalid encoded image")

def encode_pil_to_base64(image):
    with io.BytesIO() as output_bytes:

        if opts.samples_format.lower() == 'png':
            use_metadata = False
            metadata = PngImagePlugin.PngInfo()
            for key, value in image.info.items():
                if isinstance(key, str) and isinstance(value, str):
                    metadata.add_text(key, value)
                    use_metadata = True
            image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)

        elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
            parameters = image.info.get('parameters', None)
            exif_bytes = piexif.dump({
                "Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
            })
            if opts.samples_format.lower() in ("jpg", "jpeg"):
                image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
            else:
                image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)

        else:
            raise HTTPException(status_code=500, detail="Invalid image format")

        bytes_data = output_bytes.getvalue()

    return base64.b64encode(bytes_data)


if __name__ == "__main__":
    # manual_hack()
    handler = EndpointHandler("./")
    res = handler.__call__({})
    # print(res)