File size: 11,928 Bytes
1976a91 5e185f5 1976a91 5e185f5 d2dca8a 5e185f5 68a194e 5e185f5 1976a91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
# inference handler for huggingface
import os
import sys
import time
import importlib
import signal
import re
from typing import Dict, List, Any
# from fastapi import FastAPI
# from fastapi.middleware.cors import CORSMiddleware
# from fastapi.middleware.gzip import GZipMiddleware
from packaging import version
import logging
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
from modules import errors
from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call
import torch
# Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors
if ".dev" in torch.__version__ or "+git" in torch.__version__:
torch.__long_version__ = torch.__version__
torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
from modules import shared, devices, ui_tempdir
import modules.codeformer_model as codeformer
import modules.face_restoration
import modules.gfpgan_model as gfpgan
import modules.img2img
import modules.lowvram
import modules.paths
import modules.scripts
import modules.sd_hijack
import modules.sd_models
import modules.sd_vae
import modules.txt2img
import modules.script_callbacks
import modules.textual_inversion.textual_inversion
import modules.progress
import modules.ui
from modules import modelloader
from modules.shared import cmd_opts, opts
import modules.hypernetworks.hypernetwork
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
import base64
import io
from fastapi import HTTPException
from io import BytesIO
import piexif
import piexif.helper
from PIL import PngImagePlugin,Image
def initialize():
# check_versions()
# extensions.list_extensions()
# localization.list_localizations(cmd_opts.localizations_dir)
# if cmd_opts.ui_debug_mode:
# shared.sd_upscalers = upscaler.UpscalerLanczos().scalers
# modules.scripts.load_scripts()
# return
modelloader.cleanup_models()
modules.sd_models.setup_model()
codeformer.setup_model(cmd_opts.codeformer_models_path)
gfpgan.setup_model(cmd_opts.gfpgan_models_path)
modelloader.list_builtin_upscalers()
# modules.scripts.load_scripts()
modelloader.load_upscalers()
modules.sd_vae.refresh_vae_list()
# modules.textual_inversion.textual_inversion.list_textual_inversion_templates()
try:
modules.sd_models.load_model()
except Exception as e:
errors.display(e, "loading stable diffusion model")
print("", file=sys.stderr)
print("Stable diffusion model failed to load, exiting", file=sys.stderr)
exit(1)
shared.opts.data["sd_model_checkpoint"] = shared.sd_model.sd_checkpoint_info.title
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
# shared.reload_hypernetworks()
# ui_extra_networks.intialize()
# ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion())
# ui_extra_networks.register_page(ui_extra_networks_hypernets.ExtraNetworksPageHypernetworks())
# ui_extra_networks.register_page(ui_extra_networks_checkpoints.ExtraNetworksPageCheckpoints())
# extra_networks.initialize()
# extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet())
# if cmd_opts.tls_keyfile is not None and cmd_opts.tls_keyfile is not None:
# try:
# if not os.path.exists(cmd_opts.tls_keyfile):
# print("Invalid path to TLS keyfile given")
# if not os.path.exists(cmd_opts.tls_certfile):
# print(f"Invalid path to TLS certfile: '{cmd_opts.tls_certfile}'")
# except TypeError:
# cmd_opts.tls_keyfile = cmd_opts.tls_certfile = None
# print("TLS setup invalid, running webui without TLS")
# else:
# print("Running with TLS")
# make the program just exit at ctrl+c without waiting for anything
def sigint_handler(sig, frame):
print(f'Interrupted with signal {sig} in {frame}')
os._exit(0)
signal.signal(signal.SIGINT, sigint_handler)
class EndpointHandler():
def __init__(self, path=""):
# Preload all the elements you are going to need at inference.
# pseudo:
# self.model= load_model(path)
initialize()
self.shared = shared
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str` | `PIL.Image` | `np.array`)
kwargs
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
txt2img_args = {
"do_not_save_samples": True,
"do_not_save_grid": True,
"outpath_samples": "./output",
"prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer",
"negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, 3hands,4fingers,3arms, bad anatomy, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts,poorly drawn face,mutation,deformed",
"sampler_name": "DPM++ SDE Karras",
"steps": 20, # 25
"cfg_scale": 8,
"width": 512,
"height": 768,
"seed": -1,
}
img2img_args = {
"init_images": ["data:image/png;base64,"],
"resize_mode": 0,
"denoising_strength": 0.75,
"image_cfg_scale": 0,
"mask_blur": 4,
"inpainting_fill": 0,
"inpaint_full_res": 1,
"inpaint_full_res_padding": 0,
"inpainting_mask_invert": 0,
"initial_noise_multiplier": 0,
"prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer",
"styles": [],
"seed": -1,
"subseed": -1,
"subseed_strength": 0,
"seed_resize_from_h": -1,
"seed_resize_from_w": -1,
"sampler_name": "Euler a",
"batch_size": 1,
"n_iter": 1,
"steps": 50,
"cfg_scale": 7,
"width": 512,
"height": 512,
"restore_faces": 0,
"tiling": 0,
"negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, 3hands,4fingers,3arms, bad anatomy, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts,poorly drawn face,mutation,deformed",
"eta": 0,
"s_churn": 0,
"s_tmax": 0,
"s_tmin": 0,
"s_noise": 1,
"override_settings": {},
"override_settings_restore_afterwards": 1,
"script_args": [],
"sampler_index": "Euler"
}
p = None
if data["type"] == "txt2img":
if data["inputs"]:
for field in txt2img_args:
if field in data["inputs"].keys():
txt2img_args[field] = data["inputs"][field]
# if "prompt" in data["inputs"].keys():
# prompt = data["inputs"]["prompt"]
# print("get prompt from request: ", prompt)
# args["prompt"] = prompt
p = StableDiffusionProcessingTxt2Img(sd_model=self.shared.sd_model, **txt2img_args)
if data["type"] == "img2img":
if data["inputs"]:
for field in img2img_args:
if field in data["inputs"].keys():
img2img_args[field] = data["inputs"][field]
p = StableDiffusionProcessingImg2Img(sd_model=self.shared.sd_model, **img2img_args)
if p is None:
raise Exception("No processing object created")
processed = process_images(p)
single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8')
return {
"img_data": single_image_b64,
"parameters": processed.images[0].info.get('parameters', ""),
}
def manual_hack():
initialize()
args = {
# todo: don't output res
"outpath_samples": "C:\\Users\\wolvz\\Desktop",
"prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer",
"negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans",
"sampler_name": "DPM++ SDE Karras",
"steps": 20, # 25
"cfg_scale": 8,
"width": 512,
"height": 768,
"seed": -1,
}
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)
processed = process_images(p)
def decode_base64_to_image(encoding):
if encoding.startswith("data:image/"):
encoding = encoding.split(";")[1].split(",")[1]
try:
image = Image.open(BytesIO(base64.b64decode(encoding)))
return image
except Exception as err:
raise HTTPException(status_code=500, detail="Invalid encoded image")
def encode_pil_to_base64(image):
with io.BytesIO() as output_bytes:
if opts.samples_format.lower() == 'png':
use_metadata = False
metadata = PngImagePlugin.PngInfo()
for key, value in image.info.items():
if isinstance(key, str) and isinstance(value, str):
metadata.add_text(key, value)
use_metadata = True
image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
parameters = image.info.get('parameters', None)
exif_bytes = piexif.dump({
"Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
})
if opts.samples_format.lower() in ("jpg", "jpeg"):
image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
else:
image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)
else:
raise HTTPException(status_code=500, detail="Invalid image format")
bytes_data = output_bytes.getvalue()
return base64.b64encode(bytes_data)
if __name__ == "__main__":
# manual_hack()
handler = EndpointHandler("./")
res = handler.__call__({})
# print(res)
|