diff --git a/.gitattributes b/.gitattributes index c7d9f3332a950355d5a77d85000f05e6f45435ea..76ec5f1544706eaf2968aee9cd6aa4d3ea306389 100644 --- a/.gitattributes +++ b/.gitattributes @@ -4,9 +4,12 @@ *.bz2 filter=lfs diff=lfs merge=lfs -text *.ckpt filter=lfs diff=lfs merge=lfs -text *.ftz filter=lfs diff=lfs merge=lfs -text +*.gif filter=lfs diff=lfs merge=lfs -text *.gz filter=lfs diff=lfs merge=lfs -text *.h5 filter=lfs diff=lfs merge=lfs -text *.joblib filter=lfs diff=lfs merge=lfs -text +*.jpg filter=lfs diff=lfs merge=lfs -text +*.ipynb filter=lfs diff=lfs merge=lfs -text *.lfs.* filter=lfs diff=lfs merge=lfs -text *.mlmodel filter=lfs diff=lfs merge=lfs -text *.model filter=lfs diff=lfs merge=lfs -text @@ -19,6 +22,7 @@ *.pb filter=lfs diff=lfs merge=lfs -text *.pickle filter=lfs diff=lfs merge=lfs -text *.pkl filter=lfs diff=lfs merge=lfs -text +*.png filter=lfs diff=lfs merge=lfs -text *.pt filter=lfs diff=lfs merge=lfs -text *.pth filter=lfs diff=lfs merge=lfs -text *.rar filter=lfs diff=lfs merge=lfs -text diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..bb954fa7200e70c0aff469b113e14437f818deec --- /dev/null +++ b/.gitignore @@ -0,0 +1,26 @@ +__pycache__ +/ESRGAN/* +/SwinIR/* +/venv +/tmp +/GFPGANv1.3.pth +/gfpgan/weights/*.pth +/ui-config.json +/outputs +/log +/webui.settings.bat +/embeddings +/styles.csv +/params.txt +/styles.csv.bak +/interrogate +/user.css +/.idea +notification.mp3 +/SwinIR +/textual_inversion +.vscode +/extensions +/test/stdout.txt +/test/stderr.txt +/cache.json diff --git a/.lightning b/.lightning new file mode 100644 index 0000000000000000000000000000000000000000..707676a31c0c079b2f4ec9c774b03236fc96eaf2 --- /dev/null +++ b/.lightning @@ -0,0 +1 @@ +name: famous-carson-8575 diff --git a/.lightningignore b/.lightningignore new file mode 100644 index 0000000000000000000000000000000000000000..60945c31a5476e9963cf2cc6a5322b0f0d5cfef5 --- /dev/null +++ b/.lightningignore @@ -0,0 +1,32 @@ +__pycache__ +/ESRGAN/* +/SwinIR/* +/venv +/tmp +/GFPGANv1.3.pth +/gfpgan/weights/*.pth +/ui-config.json +/outputs +/log +/webui.settings.bat +/embeddings +/styles.csv +/params.txt +/styles.csv.bak +/interrogate +/user.css +/.idea +notification.mp3 +/SwinIR +/textual_inversion +.vscode +/extensions +/test/stdout.txt +/test/stderr.txt +/cache.json +.git +*/chilloutmix_NiPrunedFp32Fix.safetensors +*/vae-ft-mse-840000-ema-pruned.ckpt +*/stLouisLuxuriousWheels_v1.safetensors +*/taiwanDollLikeness_v10.safetensors +*/koreanDollLikeness_v10.safetensors diff --git a/.pylintrc b/.pylintrc new file mode 100644 index 0000000000000000000000000000000000000000..53254e5dcfd871c8c0f0f4dec9dceeb1ba967eda --- /dev/null +++ b/.pylintrc @@ -0,0 +1,3 @@ +# See https://pylint.pycqa.org/en/latest/user_guide/messages/message_control.html +[MESSAGES CONTROL] +disable=C,R,W,E,I diff --git a/LICENSE.txt b/LICENSE.txt new file mode 100644 index 0000000000000000000000000000000000000000..211d32e752cb61bd056436e8f7a806f12a626bb7 --- /dev/null +++ b/LICENSE.txt @@ -0,0 +1,663 @@ + GNU AFFERO GENERAL PUBLIC LICENSE + Version 3, 19 November 2007 + + Copyright (c) 2023 AUTOMATIC1111 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU Affero General Public License is a free, copyleft license for +software and other kinds of works, specifically designed to ensure +cooperation with the community in the case of network server software. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +our General Public Licenses are intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + Developers that use our General Public Licenses protect your rights +with two steps: (1) assert copyright on the software, and (2) offer +you this License which gives you legal permission to copy, distribute +and/or modify the software. + + A secondary benefit of defending all users' freedom is that +improvements made in alternate versions of the program, if they +receive widespread use, become available for other developers to +incorporate. Many developers of free software are heartened and +encouraged by the resulting cooperation. However, in the case of +software used on network servers, this result may fail to come about. +The GNU General Public License permits making a modified version and +letting the public access it on a server without ever releasing its +source code to the public. + + The GNU Affero General Public License is designed specifically to +ensure that, in such cases, the modified source code becomes available +to the community. It requires the operator of a network server to +provide the source code of the modified version running there to the +users of that server. Therefore, public use of a modified version, on +a publicly accessible server, gives the public access to the source +code of the modified version. + + An older license, called the Affero General Public License and +published by Affero, was designed to accomplish similar goals. This is +a different license, not a version of the Affero GPL, but Affero has +released a new version of the Affero GPL which permits relicensing under +this license. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU Affero General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Remote Network Interaction; Use with the GNU General Public License. + + Notwithstanding any other provision of this License, if you modify the +Program, your modified version must prominently offer all users +interacting with it remotely through a computer network (if your version +supports such interaction) an opportunity to receive the Corresponding +Source of your version by providing access to the Corresponding Source +from a network server at no charge, through some standard or customary +means of facilitating copying of software. This Corresponding Source +shall include the Corresponding Source for any work covered by version 3 +of the GNU General Public License that is incorporated pursuant to the +following paragraph. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the work with which it is combined will remain governed by version +3 of the GNU General Public License. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU Affero General Public License from time to time. Such new versions +will be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU Affero General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU Affero General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU Affero General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU Affero General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU Affero General Public License for more details. + + You should have received a copy of the GNU Affero General Public License + along with this program. If not, see . + +Also add information on how to contact you by electronic and paper mail. + + If your software can interact with users remotely through a computer +network, you should also make sure that it provides a way for users to +get its source. For example, if your program is a web application, its +interface could display a "Source" link that leads users to an archive +of the code. There are many ways you could offer source, and different +solutions will be better for different programs; see section 13 for the +specific requirements. + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU AGPL, see +. diff --git a/README.md b/README.md index 154df8298fab5ecf322016157858e08cd1bccbe1..3787ca72834f49d6a383420feb47557abb3d14e6 100644 --- a/README.md +++ b/README.md @@ -1,3 +1,73 @@ +# Chill Watcher +consider deploy on: +- huggingface inference point +- replicate api +- lightning.ai + +# platform comparison +> all support autoscaling + +|platform|prediction speed|charges|deploy handiness| +|-|-|-|-| +|huggingface|fast:20s|high:$0.6/hr (without autoscaling)|easy:git push| +|replicate|fast if used frequently: 30s, slow if needs initialization: 5min|low: $0.02 per generation|difficult: build image and upload| +|lightning.ai|fast with app running: 20s, slow if idle: XXs|low: free $30 per month, $0.18 per init, $0.02 per run|easy: one command| + +# platform deploy options +## huggingface +> [docs](https://huggingface.co/docs/inference-endpoints/guides/custom_handler) + +- requirements: use pip packages in `requirements.txt` +- `init()` and `predict()` function: use `handler.py`, implement the `EndpointHandler` class +- more: modify `handler.py` for requests and inference and explore more highly-customized features +- deploy: git (lfs) push to huggingface repository(the whole directory including models and weights, etc.), and use inference endpoints to deploy. Click and deploy automaticly, very simple. +- call api: use the url provide by inference endpoints after endpoint is ready(build, initialize and in a "running" state), make a post request to the url using request schema definied in the `handler.py` + +## replicate +> [docs](https://replicate.com/docs/guides/push-a-model) + +- requirements: specify all requirements(pip packages, system packages, python version, cuda, etc.) in `cog.yaml` +- `init()` and `predict()` function: use `predict.py`, implement the `Predictor` class +- more: modify `predict.py` +- deploy: + 1. get a linux GPU machine with 60GB disk space; + 2. install [cog](https://replicate.com/docs/guides/push-a-model) and [docker](https://docs.docker.com/engine/install/ubuntu/#set-up-the-repository) + 3. `git pull` the current repository from huggingface, including large model files + 4. after `predict.py` and `cog.yaml` is correctly coded, run `cog login`, `cog push`, then cog will build a docker image locally and push the image to replicate. As the image could take 30GB or so disk space, it would cost a lot network bandwidth. +- call api: if everything runs successfully and the docker image is pushed to replicate, you will see a web-ui and an API example directly in your replicate repository + +## lightning.ai +> docs: [code](https://lightning.ai/docs/app/stable/levels/basic/real_lightning_component_implementations.html), [deploy](https://lightning.ai/docs/app/stable/workflows/run_app_on_cloud/) + +- requirements: + - pip packages are listed in `requirements.txt`, note that some requirements are different from those in huggingface, and you need to modify some lines in `requirements.txt` according to the comment in the `requirements.txt` + - other pip packages, system packages and some big model weight files download commands, can be listed using a custom build config. Checkout `class CustomBuildConfig(BuildConfig)` in `app.py`. In a custom build config you can use many linux commands such as `wget` and `sudo apt-get update`. The custom build config will be executed on the `__init__()` of the `PythonServer` class +- `init()` and `predict()` function: use `app.py`, implement the `PythonServer` class. Note: + - some packages haven't been installed when the file is called(these packages may be installed when `__init__()` is called), so some import code should be in the function, not at the top of the file, or you may get import errors. + - you can't save your own value to `PythonServer.self` unless it's predifined in the variables, so don't assign any self-defined variables to `self` + - if you use the custom build config, you should implement `PythonServer`'s `__init()__` yourself, so don't forget to use the correct function signature +- more: ... +- deploy: + - `pip install lightning` + - prepare the directory on your local computer(no need to have a GPU) + - list big files in the `.lightningignore` file to avoid big file upload and save deploy time cost + - run `lightning run app app.py --cloud` in the local terminal, and it will upload the files in the directory to lightning cloud, and start deploying on the cloud + - check error logs on the web-ui, use `all logs` +- call api: only if the app starts successfully, you can see a valid url in the `settings` page of the web-ui. Open that url, and you can see the api + +### some stackoverflow: +install docker: +- https://docs.docker.com/engine/install/ubuntu/#set-up-the-repository + +install git-lfs: +- https://github.com/git-lfs/git-lfs/blob/main/INSTALLING.md +linux: +``` +curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash + +sudo apt-get install git-lfs +``` + --- license: apache-2.0 --- diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..cbaa6b59f5f1631e8dfbeabcb485f2c1d2699848 --- /dev/null +++ b/app.py @@ -0,0 +1,107 @@ +# inference handler for lightning ai + +import re +import os +import logging +# import json +from pydantic import BaseModel +from typing import Any, Dict, Optional, TYPE_CHECKING +from dataclasses import dataclass +logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage()) + +import lightning as L +from lightning.app.components.serve import PythonServer, Text +from lightning.app import BuildConfig + + +class _DefaultInputData(BaseModel): + prompt: str + +class _DefaultOutputData(BaseModel): + img_data: str + parameters: str + + +@dataclass +class CustomBuildConfig(BuildConfig): + def build_commands(self): + dir_path = "/content/" + model_path = os.path.join(dir_path, "models/Stable-diffusion") + model_url = "https://huggingface.co/Hardy01/chill_watcher/resolve/main/models/Stable-diffusion/chilloutmix_NiPrunedFp32Fix.safetensors" + download_cmd = "wget -P {} {}".format(str(model_path), model_url) + vae_url = "https://huggingface.co/Hardy01/chill_watcher/resolve/main/models/VAE/vae-ft-mse-840000-ema-pruned.ckpt" + vae_path = os.path.join(dir_path, "models/VAE") + down2 = "wget -P {} {}".format(str(vae_path), vae_url) + lora_url1 = "https://huggingface.co/Hardy01/chill_watcher/resolve/main/models/Lora/koreanDollLikeness_v10.safetensors" + lora_url2 = "https://huggingface.co/Hardy01/chill_watcher/resolve/main/models/Lora/taiwanDollLikeness_v10.safetensors" + lora_path = os.path.join(dir_path, "models/Lora") + down3 = "wget -P {} {}".format(str(lora_path), lora_url1) + down4 = "wget -P {} {}".format(str(lora_path), lora_url2) + # https://stackoverflow.com/questions/55313610/importerror-libgl-so-1-cannot-open-shared-object-file-no-such-file-or-directo + cmd1 = "pip3 install torch==1.13.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117" + cmd2 = "pip3 install torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117" + cmd_31 = "sudo apt-get update" + cmd3 = "sudo apt-get install libgl1-mesa-glx" + cmd4 = "sudo apt-get install libglib2.0-0" + return [download_cmd, down2, down3, down4, cmd1, cmd2, cmd_31, cmd3, cmd4] + + +class PyTorchServer(PythonServer): + def __init__( + self, + input_type: type = _DefaultInputData, + output_type: type = _DefaultOutputData, + **kwargs: Any, + ): + super().__init__(input_type=input_type, output_type=output_type, **kwargs) + + # Use the custom build config + self.cloud_build_config = CustomBuildConfig() + def setup(self): + # need to install dependancies first to import packages + import torch + # Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors + if ".dev" in torch.__version__ or "+git" in torch.__version__: + torch.__long_version__ = torch.__version__ + torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0) + + from handler import initialize + initialize() + + def predict(self, request): + from modules.api.api import encode_pil_to_base64 + from modules import shared + from modules.processing import StableDiffusionProcessingTxt2Img, process_images + args = { + "do_not_save_samples": True, + "do_not_save_grid": True, + "outpath_samples": "/content/desktop", + "prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer", + "negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, 3hands,4fingers,3arms, bad anatomy, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts,poorly drawn face,mutation,deformed", + "sampler_name": "DPM++ SDE Karras", + "steps": 20, # 25 + "cfg_scale": 8, + "width": 512, + "height": 768, + "seed": -1, + } + print("&&&&&&&&&&&&&&&&&&&&&&&&",request) + if request.prompt: + prompt = request.prompt + print("get prompt from request: ", prompt) + args["prompt"] = prompt + p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args) + processed = process_images(p) + single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8') + return { + "img_data": single_image_b64, + "parameters": processed.images[0].info.get('parameters', ""), + } + + +component = PyTorchServer( + cloud_compute=L.CloudCompute('gpu', disk_size=20, idle_timeout=30) +) +# lightning run app app.py --cloud +app = L.LightningApp(component) + diff --git a/cog.yaml b/cog.yaml new file mode 100644 index 0000000000000000000000000000000000000000..d41b2003fadd7efbfe1195ac1e9d4e8e86b7b449 --- /dev/null +++ b/cog.yaml @@ -0,0 +1,68 @@ +# Configuration for Cog ⚙️ +# https://replicate.com/docs/guides/push-a-model +# prerequisite:https://docs.docker.com/engine/install/ubuntu/#set-up-the-repository `dockerd` to start docker +# Reference: https://github.com/replicate/cog/blob/main/docs/yaml.md +# !!!! recommend 60G disk space for cog docker + +build: + # set to true if your model requires a GPU + gpu: true + + # a list of ubuntu apt packages to install + system_packages: + - "libgl1-mesa-glx" + - "libglib2.0-0" + + # python version in the form '3.8' or '3.8.12' + python_version: "3.10.4" + + # a list of packages in the format == + python_packages: + - blendmodes==2022 + - transformers==4.25.1 + - accelerate==0.12.0 + - basicsr==1.4.2 + - gfpgan==1.3.8 + - gradio==3.16.2 + - numpy==1.23.3 + - Pillow==9.4.0 + - realesrgan==0.3.0 + # - torch==1.13.1+cu117 + # - --extra-index-url https://download.pytorch.org/whl/cu117 + # - torchvision==0.14.1+cu117 + # - --extra-index-url https://download.pytorch.org/whl/cu117 + - omegaconf==2.2.3 + - pytorch_lightning==1.7.6 + - scikit-image==0.19.2 + - fonts + - font-roboto + - timm==0.6.7 + - piexif==1.1.3 + - einops==0.4.1 + - jsonmerge==1.8.0 + - clean-fid==0.1.29 + - resize-right==0.0.2 + - torchdiffeq==0.2.3 + - kornia==0.6.7 + - lark==1.1.2 + - inflection==0.5.1 + - GitPython==3.1.27 + - torchsde==0.2.5 + - safetensors==0.2.7 + - httpcore<=0.15 + - fastapi==0.90.1 + # - open_clip_torch + - git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b + - git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1 + + # commands run after the environment is setup + run: + - "pip3 install torch==1.13.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117" + - "pip3 install torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117" + - "echo env is ready!" + +# https://replicate.com/wolverinn/chill_watcher +image: "r8.im/wolverinn/chill_watcher" + +# predict.py defines how predictions are run on your model +predict: "predict.py:Predictor" diff --git a/config.json b/config.json new file mode 100644 index 0000000000000000000000000000000000000000..3b3b2bb286b0e5a33fce78ac7b3d8143d6fc2a87 --- /dev/null +++ b/config.json @@ -0,0 +1,148 @@ +{ + "samples_save": true, + "samples_format": "png", + "samples_filename_pattern": "", + "save_images_add_number": true, + "grid_save": true, + "grid_format": "png", + "grid_extended_filename": false, + "grid_only_if_multiple": true, + "grid_prevent_empty_spots": false, + "n_rows": -1, + "enable_pnginfo": true, + "save_txt": false, + "save_images_before_face_restoration": false, + "save_images_before_highres_fix": false, + "save_images_before_color_correction": false, + "jpeg_quality": 80, + "export_for_4chan": true, + "img_downscale_threshold": 4.0, + "target_side_length": 4000, + "use_original_name_batch": true, + "use_upscaler_name_as_suffix": false, + "save_selected_only": true, + "do_not_add_watermark": false, + "temp_dir": "", + "clean_temp_dir_at_start": false, + "outdir_samples": "", + "outdir_txt2img_samples": "outputs/txt2img-images", + "outdir_img2img_samples": "outputs/img2img-images", + "outdir_extras_samples": "outputs/extras-images", + "outdir_grids": "", + "outdir_txt2img_grids": "outputs/txt2img-grids", + "outdir_img2img_grids": "outputs/img2img-grids", + "outdir_save": "log/images", + "save_to_dirs": true, + "grid_save_to_dirs": true, + "use_save_to_dirs_for_ui": false, + "directories_filename_pattern": "[date]", + "directories_max_prompt_words": 8, + "ESRGAN_tile": 192, + "ESRGAN_tile_overlap": 8, + "realesrgan_enabled_models": [ + "R-ESRGAN 4x+", + "R-ESRGAN 4x+ Anime6B" + ], + "upscaler_for_img2img": null, + "face_restoration_model": "CodeFormer", + "code_former_weight": 0.5, + "face_restoration_unload": false, + "show_warnings": false, + "memmon_poll_rate": 8, + "samples_log_stdout": false, + "multiple_tqdm": true, + "print_hypernet_extra": false, + "unload_models_when_training": false, + "pin_memory": false, + "save_optimizer_state": false, + "save_training_settings_to_txt": true, + "dataset_filename_word_regex": "", + "dataset_filename_join_string": " ", + "training_image_repeats_per_epoch": 1, + "training_write_csv_every": 500, + "training_xattention_optimizations": false, + "training_enable_tensorboard": false, + "training_tensorboard_save_images": false, + "training_tensorboard_flush_every": 120, + "sd_model_checkpoint": "chilloutmix_NiPrunedFp32Fix.safetensors [fc2511737a]", + "sd_checkpoint_cache": 0, + "sd_vae_checkpoint_cache": 0, + "sd_vae": "Automatic", + "sd_vae_as_default": true, + "inpainting_mask_weight": 1.0, + "initial_noise_multiplier": 1.0, + "img2img_color_correction": false, + "img2img_fix_steps": false, + "img2img_background_color": "#ffffff", + "enable_quantization": false, + "enable_emphasis": true, + "enable_batch_seeds": true, + "comma_padding_backtrack": 20, + "CLIP_stop_at_last_layers": 1, + "upcast_attn": false, + "use_old_emphasis_implementation": false, + "use_old_karras_scheduler_sigmas": false, + "no_dpmpp_sde_batch_determinism": false, + "use_old_hires_fix_width_height": false, + "interrogate_keep_models_in_memory": false, + "interrogate_return_ranks": false, + "interrogate_clip_num_beams": 1, + "interrogate_clip_min_length": 24, + "interrogate_clip_max_length": 48, + "interrogate_clip_dict_limit": 1500, + "interrogate_clip_skip_categories": [], + "interrogate_deepbooru_score_threshold": 0.5, + "deepbooru_sort_alpha": true, + "deepbooru_use_spaces": false, + "deepbooru_escape": true, + "deepbooru_filter_tags": "", + "extra_networks_default_view": "cards", + "extra_networks_default_multiplier": 1.0, + "sd_hypernetwork": "None", + "return_grid": true, + "do_not_show_images": false, + "add_model_hash_to_info": true, + "add_model_name_to_info": true, + "disable_weights_auto_swap": true, + "send_seed": true, + "send_size": true, + "font": "", + "js_modal_lightbox": true, + "js_modal_lightbox_initially_zoomed": true, + "show_progress_in_title": true, + "samplers_in_dropdown": true, + "dimensions_and_batch_together": true, + "keyedit_precision_attention": 0.1, + "keyedit_precision_extra": 0.05, + "quicksettings": "sd_model_checkpoint", + "ui_reorder": "inpaint, sampler, checkboxes, hires_fix, dimensions, cfg, seed, batch, override_settings, scripts", + "ui_extra_networks_tab_reorder": "", + "localization": "zh_CN", + "show_progressbar": true, + "live_previews_enable": true, + "show_progress_grid": true, + "show_progress_every_n_steps": 10, + "show_progress_type": "Approx NN", + "live_preview_content": "Prompt", + "live_preview_refresh_period": 1000, + "hide_samplers": [], + "eta_ddim": 0.0, + "eta_ancestral": 1.0, + "ddim_discretize": "uniform", + "s_churn": 0.0, + "s_tmin": 0.0, + "s_noise": 1.0, + "eta_noise_seed_delta": 0, + "always_discard_next_to_last_sigma": false, + "postprocessing_enable_in_main_ui": [], + "postprocessing_operation_order": [], + "upscaling_max_images_in_cache": 5, + "disabled_extensions": [], + "sd_checkpoint_hash": "fc2511737a54c5e80b89ab03e0ab4b98d051ab187f92860f3cd664dc9d08b271", + "ldsr_steps": 100, + "ldsr_cached": false, + "SWIN_tile": 192, + "SWIN_tile_overlap": 8, + "sd_lora": "None", + "lora_apply_to_outputs": false +} \ No newline at end of file diff --git a/configs/alt-diffusion-inference.yaml b/configs/alt-diffusion-inference.yaml new file mode 100644 index 0000000000000000000000000000000000000000..cfbee72d71bfd7deed2075e423ca51bd1da0521c --- /dev/null +++ b/configs/alt-diffusion-inference.yaml @@ -0,0 +1,72 @@ +model: + base_learning_rate: 1.0e-04 + target: ldm.models.diffusion.ddpm.LatentDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: crossattn + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: False + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 10000 ] + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + image_size: 32 # unused + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: modules.xlmr.BertSeriesModelWithTransformation + params: + name: "XLMR-Large" \ No newline at end of file diff --git a/configs/instruct-pix2pix.yaml b/configs/instruct-pix2pix.yaml new file mode 100644 index 0000000000000000000000000000000000000000..4e896879dd7ac5697b89cb323ec43eb41c03596c --- /dev/null +++ b/configs/instruct-pix2pix.yaml @@ -0,0 +1,98 @@ +# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion). +# See more details in LICENSE. + +model: + base_learning_rate: 1.0e-04 + target: modules.models.diffusion.ddpm_edit.LatentDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: edited + cond_stage_key: edit + # image_size: 64 + # image_size: 32 + image_size: 16 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: hybrid + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: false + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 0 ] + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + image_size: 32 # unused + in_channels: 8 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenCLIPEmbedder + +data: + target: main.DataModuleFromConfig + params: + batch_size: 128 + num_workers: 1 + wrap: false + validation: + target: edit_dataset.EditDataset + params: + path: data/clip-filtered-dataset + cache_dir: data/ + cache_name: data_10k + split: val + min_text_sim: 0.2 + min_image_sim: 0.75 + min_direction_sim: 0.2 + max_samples_per_prompt: 1 + min_resize_res: 512 + max_resize_res: 512 + crop_res: 512 + output_as_edit: False + real_input: True diff --git a/configs/v1-inference.yaml b/configs/v1-inference.yaml new file mode 100644 index 0000000000000000000000000000000000000000..d4effe569e897369918625f9d8be5603a0e6a0d6 --- /dev/null +++ b/configs/v1-inference.yaml @@ -0,0 +1,70 @@ +model: + base_learning_rate: 1.0e-04 + target: ldm.models.diffusion.ddpm.LatentDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: crossattn + monitor: val/loss_simple_ema + scale_factor: 0.18215 + use_ema: False + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 10000 ] + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + image_size: 32 # unused + in_channels: 4 + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenCLIPEmbedder diff --git a/configs/v1-inpainting-inference.yaml b/configs/v1-inpainting-inference.yaml new file mode 100644 index 0000000000000000000000000000000000000000..f9eec37d24bce33ce92320a782d16ae72308190a --- /dev/null +++ b/configs/v1-inpainting-inference.yaml @@ -0,0 +1,70 @@ +model: + base_learning_rate: 7.5e-05 + target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion + params: + linear_start: 0.00085 + linear_end: 0.0120 + num_timesteps_cond: 1 + log_every_t: 200 + timesteps: 1000 + first_stage_key: "jpg" + cond_stage_key: "txt" + image_size: 64 + channels: 4 + cond_stage_trainable: false # Note: different from the one we trained before + conditioning_key: hybrid # important + monitor: val/loss_simple_ema + scale_factor: 0.18215 + finetune_keys: null + + scheduler_config: # 10000 warmup steps + target: ldm.lr_scheduler.LambdaLinearScheduler + params: + warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch + cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases + f_start: [ 1.e-6 ] + f_max: [ 1. ] + f_min: [ 1. ] + + unet_config: + target: ldm.modules.diffusionmodules.openaimodel.UNetModel + params: + image_size: 32 # unused + in_channels: 9 # 4 data + 4 downscaled image + 1 mask + out_channels: 4 + model_channels: 320 + attention_resolutions: [ 4, 2, 1 ] + num_res_blocks: 2 + channel_mult: [ 1, 2, 4, 4 ] + num_heads: 8 + use_spatial_transformer: True + transformer_depth: 1 + context_dim: 768 + use_checkpoint: True + legacy: False + + first_stage_config: + target: ldm.models.autoencoder.AutoencoderKL + params: + embed_dim: 4 + monitor: val/rec_loss + ddconfig: + double_z: true + z_channels: 4 + resolution: 256 + in_channels: 3 + out_ch: 3 + ch: 128 + ch_mult: + - 1 + - 2 + - 4 + - 4 + num_res_blocks: 2 + attn_resolutions: [] + dropout: 0.0 + lossconfig: + target: torch.nn.Identity + + cond_stage_config: + target: ldm.modules.encoders.modules.FrozenCLIPEmbedder diff --git a/extensions-builtin/LDSR/ldsr_model_arch.py b/extensions-builtin/LDSR/ldsr_model_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..bc11cc6e4821bf110ada3c61c0fef35be7f548e8 --- /dev/null +++ b/extensions-builtin/LDSR/ldsr_model_arch.py @@ -0,0 +1,253 @@ +import os +import gc +import time + +import numpy as np +import torch +import torchvision +from PIL import Image +from einops import rearrange, repeat +from omegaconf import OmegaConf +import safetensors.torch + +from ldm.models.diffusion.ddim import DDIMSampler +from ldm.util import instantiate_from_config, ismap +from modules import shared, sd_hijack + +cached_ldsr_model: torch.nn.Module = None + + +# Create LDSR Class +class LDSR: + def load_model_from_config(self, half_attention): + global cached_ldsr_model + + if shared.opts.ldsr_cached and cached_ldsr_model is not None: + print("Loading model from cache") + model: torch.nn.Module = cached_ldsr_model + else: + print(f"Loading model from {self.modelPath}") + _, extension = os.path.splitext(self.modelPath) + if extension.lower() == ".safetensors": + pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu") + else: + pl_sd = torch.load(self.modelPath, map_location="cpu") + sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd + config = OmegaConf.load(self.yamlPath) + config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1" + model: torch.nn.Module = instantiate_from_config(config.model) + model.load_state_dict(sd, strict=False) + model = model.to(shared.device) + if half_attention: + model = model.half() + if shared.cmd_opts.opt_channelslast: + model = model.to(memory_format=torch.channels_last) + + sd_hijack.model_hijack.hijack(model) # apply optimization + model.eval() + + if shared.opts.ldsr_cached: + cached_ldsr_model = model + + return {"model": model} + + def __init__(self, model_path, yaml_path): + self.modelPath = model_path + self.yamlPath = yaml_path + + @staticmethod + def run(model, selected_path, custom_steps, eta): + example = get_cond(selected_path) + + n_runs = 1 + guider = None + ckwargs = None + ddim_use_x0_pred = False + temperature = 1. + eta = eta + custom_shape = None + + height, width = example["image"].shape[1:3] + split_input = height >= 128 and width >= 128 + + if split_input: + ks = 128 + stride = 64 + vqf = 4 # + model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride), + "vqf": vqf, + "patch_distributed_vq": True, + "tie_braker": False, + "clip_max_weight": 0.5, + "clip_min_weight": 0.01, + "clip_max_tie_weight": 0.5, + "clip_min_tie_weight": 0.01} + else: + if hasattr(model, "split_input_params"): + delattr(model, "split_input_params") + + x_t = None + logs = None + for n in range(n_runs): + if custom_shape is not None: + x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device) + x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0]) + + logs = make_convolutional_sample(example, model, + custom_steps=custom_steps, + eta=eta, quantize_x0=False, + custom_shape=custom_shape, + temperature=temperature, noise_dropout=0., + corrector=guider, corrector_kwargs=ckwargs, x_T=x_t, + ddim_use_x0_pred=ddim_use_x0_pred + ) + return logs + + def super_resolution(self, image, steps=100, target_scale=2, half_attention=False): + model = self.load_model_from_config(half_attention) + + # Run settings + diffusion_steps = int(steps) + eta = 1.0 + + down_sample_method = 'Lanczos' + + gc.collect() + if torch.cuda.is_available: + torch.cuda.empty_cache() + + im_og = image + width_og, height_og = im_og.size + # If we can adjust the max upscale size, then the 4 below should be our variable + down_sample_rate = target_scale / 4 + wd = width_og * down_sample_rate + hd = height_og * down_sample_rate + width_downsampled_pre = int(np.ceil(wd)) + height_downsampled_pre = int(np.ceil(hd)) + + if down_sample_rate != 1: + print( + f'Downsampling from [{width_og}, {height_og}] to [{width_downsampled_pre}, {height_downsampled_pre}]') + im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS) + else: + print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)") + + # pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts + pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size + im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) + + logs = self.run(model["model"], im_padded, diffusion_steps, eta) + + sample = logs["sample"] + sample = sample.detach().cpu() + sample = torch.clamp(sample, -1., 1.) + sample = (sample + 1.) / 2. * 255 + sample = sample.numpy().astype(np.uint8) + sample = np.transpose(sample, (0, 2, 3, 1)) + a = Image.fromarray(sample[0]) + + # remove padding + a = a.crop((0, 0) + tuple(np.array(im_og.size) * 4)) + + del model + gc.collect() + if torch.cuda.is_available: + torch.cuda.empty_cache() + + return a + + +def get_cond(selected_path): + example = dict() + up_f = 4 + c = selected_path.convert('RGB') + c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0) + c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]], + antialias=True) + c_up = rearrange(c_up, '1 c h w -> 1 h w c') + c = rearrange(c, '1 c h w -> 1 h w c') + c = 2. * c - 1. + + c = c.to(shared.device) + example["LR_image"] = c + example["image"] = c_up + + return example + + +@torch.no_grad() +def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None, + mask=None, x0=None, quantize_x0=False, temperature=1., score_corrector=None, + corrector_kwargs=None, x_t=None + ): + ddim = DDIMSampler(model) + bs = shape[0] + shape = shape[1:] + print(f"Sampling with eta = {eta}; steps: {steps}") + samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback, + normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta, + mask=mask, x0=x0, temperature=temperature, verbose=False, + score_corrector=score_corrector, + corrector_kwargs=corrector_kwargs, x_t=x_t) + + return samples, intermediates + + +@torch.no_grad() +def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None, + corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False): + log = dict() + + z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key, + return_first_stage_outputs=True, + force_c_encode=not (hasattr(model, 'split_input_params') + and model.cond_stage_key == 'coordinates_bbox'), + return_original_cond=True) + + if custom_shape is not None: + z = torch.randn(custom_shape) + print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}") + + z0 = None + + log["input"] = x + log["reconstruction"] = xrec + + if ismap(xc): + log["original_conditioning"] = model.to_rgb(xc) + if hasattr(model, 'cond_stage_key'): + log[model.cond_stage_key] = model.to_rgb(xc) + + else: + log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x) + if model.cond_stage_model: + log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x) + if model.cond_stage_key == 'class_label': + log[model.cond_stage_key] = xc[model.cond_stage_key] + + with model.ema_scope("Plotting"): + t0 = time.time() + + sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape, + eta=eta, + quantize_x0=quantize_x0, mask=None, x0=z0, + temperature=temperature, score_corrector=corrector, corrector_kwargs=corrector_kwargs, + x_t=x_T) + t1 = time.time() + + if ddim_use_x0_pred: + sample = intermediates['pred_x0'][-1] + + x_sample = model.decode_first_stage(sample) + + try: + x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True) + log["sample_noquant"] = x_sample_noquant + log["sample_diff"] = torch.abs(x_sample_noquant - x_sample) + except: + pass + + log["sample"] = x_sample + log["time"] = t1 - t0 + + return log diff --git a/extensions-builtin/LDSR/preload.py b/extensions-builtin/LDSR/preload.py new file mode 100644 index 0000000000000000000000000000000000000000..cfd478d545ed12ef74e73fa40b6defe0156859da --- /dev/null +++ b/extensions-builtin/LDSR/preload.py @@ -0,0 +1,6 @@ +import os +from modules import paths + + +def preload(parser): + parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(paths.models_path, 'LDSR')) diff --git a/extensions-builtin/LDSR/scripts/ldsr_model.py b/extensions-builtin/LDSR/scripts/ldsr_model.py new file mode 100644 index 0000000000000000000000000000000000000000..b8cff29b9f4ca56e3a9f4b1ac8e150abb1a0ff30 --- /dev/null +++ b/extensions-builtin/LDSR/scripts/ldsr_model.py @@ -0,0 +1,69 @@ +import os +import sys +import traceback + +from basicsr.utils.download_util import load_file_from_url + +from modules.upscaler import Upscaler, UpscalerData +from ldsr_model_arch import LDSR +from modules import shared, script_callbacks +import sd_hijack_autoencoder, sd_hijack_ddpm_v1 + + +class UpscalerLDSR(Upscaler): + def __init__(self, user_path): + self.name = "LDSR" + self.user_path = user_path + self.model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1" + self.yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1" + super().__init__() + scaler_data = UpscalerData("LDSR", None, self) + self.scalers = [scaler_data] + + def load_model(self, path: str): + # Remove incorrect project.yaml file if too big + yaml_path = os.path.join(self.model_path, "project.yaml") + old_model_path = os.path.join(self.model_path, "model.pth") + new_model_path = os.path.join(self.model_path, "model.ckpt") + safetensors_model_path = os.path.join(self.model_path, "model.safetensors") + if os.path.exists(yaml_path): + statinfo = os.stat(yaml_path) + if statinfo.st_size >= 10485760: + print("Removing invalid LDSR YAML file.") + os.remove(yaml_path) + if os.path.exists(old_model_path): + print("Renaming model from model.pth to model.ckpt") + os.rename(old_model_path, new_model_path) + if os.path.exists(safetensors_model_path): + model = safetensors_model_path + else: + model = load_file_from_url(url=self.model_url, model_dir=self.model_path, + file_name="model.ckpt", progress=True) + yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path, + file_name="project.yaml", progress=True) + + try: + return LDSR(model, yaml) + + except Exception: + print("Error importing LDSR:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + return None + + def do_upscale(self, img, path): + ldsr = self.load_model(path) + if ldsr is None: + print("NO LDSR!") + return img + ddim_steps = shared.opts.ldsr_steps + return ldsr.super_resolution(img, ddim_steps, self.scale) + + +def on_ui_settings(): + import gradio as gr + + shared.opts.add_option("ldsr_steps", shared.OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}, section=('upscaling', "Upscaling"))) + shared.opts.add_option("ldsr_cached", shared.OptionInfo(False, "Cache LDSR model in memory", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling"))) + + +script_callbacks.on_ui_settings(on_ui_settings) diff --git a/extensions-builtin/LDSR/sd_hijack_autoencoder.py b/extensions-builtin/LDSR/sd_hijack_autoencoder.py new file mode 100644 index 0000000000000000000000000000000000000000..8e03c7f898988c237c714ed949610f5035b30b50 --- /dev/null +++ b/extensions-builtin/LDSR/sd_hijack_autoencoder.py @@ -0,0 +1,286 @@ +# The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo +# The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo +# As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder + +import torch +import pytorch_lightning as pl +import torch.nn.functional as F +from contextlib import contextmanager +from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer +from ldm.modules.diffusionmodules.model import Encoder, Decoder +from ldm.util import instantiate_from_config + +import ldm.models.autoencoder + +class VQModel(pl.LightningModule): + def __init__(self, + ddconfig, + lossconfig, + n_embed, + embed_dim, + ckpt_path=None, + ignore_keys=[], + image_key="image", + colorize_nlabels=None, + monitor=None, + batch_resize_range=None, + scheduler_config=None, + lr_g_factor=1.0, + remap=None, + sane_index_shape=False, # tell vector quantizer to return indices as bhw + use_ema=False + ): + super().__init__() + self.embed_dim = embed_dim + self.n_embed = n_embed + self.image_key = image_key + self.encoder = Encoder(**ddconfig) + self.decoder = Decoder(**ddconfig) + self.loss = instantiate_from_config(lossconfig) + self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, + remap=remap, + sane_index_shape=sane_index_shape) + self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) + self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) + if colorize_nlabels is not None: + assert type(colorize_nlabels)==int + self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) + if monitor is not None: + self.monitor = monitor + self.batch_resize_range = batch_resize_range + if self.batch_resize_range is not None: + print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.") + + self.use_ema = use_ema + if self.use_ema: + self.model_ema = LitEma(self) + print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") + + if ckpt_path is not None: + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) + self.scheduler_config = scheduler_config + self.lr_g_factor = lr_g_factor + + @contextmanager + def ema_scope(self, context=None): + if self.use_ema: + self.model_ema.store(self.parameters()) + self.model_ema.copy_to(self) + if context is not None: + print(f"{context}: Switched to EMA weights") + try: + yield None + finally: + if self.use_ema: + self.model_ema.restore(self.parameters()) + if context is not None: + print(f"{context}: Restored training weights") + + def init_from_ckpt(self, path, ignore_keys=list()): + sd = torch.load(path, map_location="cpu")["state_dict"] + keys = list(sd.keys()) + for k in keys: + for ik in ignore_keys: + if k.startswith(ik): + print("Deleting key {} from state_dict.".format(k)) + del sd[k] + missing, unexpected = self.load_state_dict(sd, strict=False) + print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") + if len(missing) > 0: + print(f"Missing Keys: {missing}") + print(f"Unexpected Keys: {unexpected}") + + def on_train_batch_end(self, *args, **kwargs): + if self.use_ema: + self.model_ema(self) + + def encode(self, x): + h = self.encoder(x) + h = self.quant_conv(h) + quant, emb_loss, info = self.quantize(h) + return quant, emb_loss, info + + def encode_to_prequant(self, x): + h = self.encoder(x) + h = self.quant_conv(h) + return h + + def decode(self, quant): + quant = self.post_quant_conv(quant) + dec = self.decoder(quant) + return dec + + def decode_code(self, code_b): + quant_b = self.quantize.embed_code(code_b) + dec = self.decode(quant_b) + return dec + + def forward(self, input, return_pred_indices=False): + quant, diff, (_,_,ind) = self.encode(input) + dec = self.decode(quant) + if return_pred_indices: + return dec, diff, ind + return dec, diff + + def get_input(self, batch, k): + x = batch[k] + if len(x.shape) == 3: + x = x[..., None] + x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() + if self.batch_resize_range is not None: + lower_size = self.batch_resize_range[0] + upper_size = self.batch_resize_range[1] + if self.global_step <= 4: + # do the first few batches with max size to avoid later oom + new_resize = upper_size + else: + new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16)) + if new_resize != x.shape[2]: + x = F.interpolate(x, size=new_resize, mode="bicubic") + x = x.detach() + return x + + def training_step(self, batch, batch_idx, optimizer_idx): + # https://github.com/pytorch/pytorch/issues/37142 + # try not to fool the heuristics + x = self.get_input(batch, self.image_key) + xrec, qloss, ind = self(x, return_pred_indices=True) + + if optimizer_idx == 0: + # autoencode + aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, + last_layer=self.get_last_layer(), split="train", + predicted_indices=ind) + + self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) + return aeloss + + if optimizer_idx == 1: + # discriminator + discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, + last_layer=self.get_last_layer(), split="train") + self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) + return discloss + + def validation_step(self, batch, batch_idx): + log_dict = self._validation_step(batch, batch_idx) + with self.ema_scope(): + log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema") + return log_dict + + def _validation_step(self, batch, batch_idx, suffix=""): + x = self.get_input(batch, self.image_key) + xrec, qloss, ind = self(x, return_pred_indices=True) + aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, + self.global_step, + last_layer=self.get_last_layer(), + split="val"+suffix, + predicted_indices=ind + ) + + discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, + self.global_step, + last_layer=self.get_last_layer(), + split="val"+suffix, + predicted_indices=ind + ) + rec_loss = log_dict_ae[f"val{suffix}/rec_loss"] + self.log(f"val{suffix}/rec_loss", rec_loss, + prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) + self.log(f"val{suffix}/aeloss", aeloss, + prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True) + if version.parse(pl.__version__) >= version.parse('1.4.0'): + del log_dict_ae[f"val{suffix}/rec_loss"] + self.log_dict(log_dict_ae) + self.log_dict(log_dict_disc) + return self.log_dict + + def configure_optimizers(self): + lr_d = self.learning_rate + lr_g = self.lr_g_factor*self.learning_rate + print("lr_d", lr_d) + print("lr_g", lr_g) + opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ + list(self.decoder.parameters())+ + list(self.quantize.parameters())+ + list(self.quant_conv.parameters())+ + list(self.post_quant_conv.parameters()), + lr=lr_g, betas=(0.5, 0.9)) + opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), + lr=lr_d, betas=(0.5, 0.9)) + + if self.scheduler_config is not None: + scheduler = instantiate_from_config(self.scheduler_config) + + print("Setting up LambdaLR scheduler...") + scheduler = [ + { + 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule), + 'interval': 'step', + 'frequency': 1 + }, + { + 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule), + 'interval': 'step', + 'frequency': 1 + }, + ] + return [opt_ae, opt_disc], scheduler + return [opt_ae, opt_disc], [] + + def get_last_layer(self): + return self.decoder.conv_out.weight + + def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs): + log = dict() + x = self.get_input(batch, self.image_key) + x = x.to(self.device) + if only_inputs: + log["inputs"] = x + return log + xrec, _ = self(x) + if x.shape[1] > 3: + # colorize with random projection + assert xrec.shape[1] > 3 + x = self.to_rgb(x) + xrec = self.to_rgb(xrec) + log["inputs"] = x + log["reconstructions"] = xrec + if plot_ema: + with self.ema_scope(): + xrec_ema, _ = self(x) + if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema) + log["reconstructions_ema"] = xrec_ema + return log + + def to_rgb(self, x): + assert self.image_key == "segmentation" + if not hasattr(self, "colorize"): + self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) + x = F.conv2d(x, weight=self.colorize) + x = 2.*(x-x.min())/(x.max()-x.min()) - 1. + return x + + +class VQModelInterface(VQModel): + def __init__(self, embed_dim, *args, **kwargs): + super().__init__(embed_dim=embed_dim, *args, **kwargs) + self.embed_dim = embed_dim + + def encode(self, x): + h = self.encoder(x) + h = self.quant_conv(h) + return h + + def decode(self, h, force_not_quantize=False): + # also go through quantization layer + if not force_not_quantize: + quant, emb_loss, info = self.quantize(h) + else: + quant = h + quant = self.post_quant_conv(quant) + dec = self.decoder(quant) + return dec + +setattr(ldm.models.autoencoder, "VQModel", VQModel) +setattr(ldm.models.autoencoder, "VQModelInterface", VQModelInterface) diff --git a/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py new file mode 100644 index 0000000000000000000000000000000000000000..5c0488e5f6fcea41e7f9fa25070e38fbfe656478 --- /dev/null +++ b/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py @@ -0,0 +1,1449 @@ +# This script is copied from the compvis/stable-diffusion repo (aka the SD V1 repo) +# Original filename: ldm/models/diffusion/ddpm.py +# The purpose to reinstate the old DDPM logic which works with VQ, whereas the V2 one doesn't +# Some models such as LDSR require VQ to work correctly +# The classes are suffixed with "V1" and added back to the "ldm.models.diffusion.ddpm" module + +import torch +import torch.nn as nn +import numpy as np +import pytorch_lightning as pl +from torch.optim.lr_scheduler import LambdaLR +from einops import rearrange, repeat +from contextlib import contextmanager +from functools import partial +from tqdm import tqdm +from torchvision.utils import make_grid +from pytorch_lightning.utilities.distributed import rank_zero_only + +from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config +from ldm.modules.ema import LitEma +from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution +from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL +from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like +from ldm.models.diffusion.ddim import DDIMSampler + +import ldm.models.diffusion.ddpm + +__conditioning_keys__ = {'concat': 'c_concat', + 'crossattn': 'c_crossattn', + 'adm': 'y'} + + +def disabled_train(self, mode=True): + """Overwrite model.train with this function to make sure train/eval mode + does not change anymore.""" + return self + + +def uniform_on_device(r1, r2, shape, device): + return (r1 - r2) * torch.rand(*shape, device=device) + r2 + + +class DDPMV1(pl.LightningModule): + # classic DDPM with Gaussian diffusion, in image space + def __init__(self, + unet_config, + timesteps=1000, + beta_schedule="linear", + loss_type="l2", + ckpt_path=None, + ignore_keys=[], + load_only_unet=False, + monitor="val/loss", + use_ema=True, + first_stage_key="image", + image_size=256, + channels=3, + log_every_t=100, + clip_denoised=True, + linear_start=1e-4, + linear_end=2e-2, + cosine_s=8e-3, + given_betas=None, + original_elbo_weight=0., + v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta + l_simple_weight=1., + conditioning_key=None, + parameterization="eps", # all assuming fixed variance schedules + scheduler_config=None, + use_positional_encodings=False, + learn_logvar=False, + logvar_init=0., + ): + super().__init__() + assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"' + self.parameterization = parameterization + print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") + self.cond_stage_model = None + self.clip_denoised = clip_denoised + self.log_every_t = log_every_t + self.first_stage_key = first_stage_key + self.image_size = image_size # try conv? + self.channels = channels + self.use_positional_encodings = use_positional_encodings + self.model = DiffusionWrapperV1(unet_config, conditioning_key) + count_params(self.model, verbose=True) + self.use_ema = use_ema + if self.use_ema: + self.model_ema = LitEma(self.model) + print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") + + self.use_scheduler = scheduler_config is not None + if self.use_scheduler: + self.scheduler_config = scheduler_config + + self.v_posterior = v_posterior + self.original_elbo_weight = original_elbo_weight + self.l_simple_weight = l_simple_weight + + if monitor is not None: + self.monitor = monitor + if ckpt_path is not None: + self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet) + + self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, + linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) + + self.loss_type = loss_type + + self.learn_logvar = learn_logvar + self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) + if self.learn_logvar: + self.logvar = nn.Parameter(self.logvar, requires_grad=True) + + + def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, + linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + if exists(given_betas): + betas = given_betas + else: + betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, + cosine_s=cosine_s) + alphas = 1. - betas + alphas_cumprod = np.cumprod(alphas, axis=0) + alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) + + timesteps, = betas.shape + self.num_timesteps = int(timesteps) + self.linear_start = linear_start + self.linear_end = linear_end + assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' + + to_torch = partial(torch.tensor, dtype=torch.float32) + + self.register_buffer('betas', to_torch(betas)) + self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) + self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) + + # calculations for diffusion q(x_t | x_{t-1}) and others + self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) + self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) + self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) + self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) + self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) + + # calculations for posterior q(x_{t-1} | x_t, x_0) + posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( + 1. - alphas_cumprod) + self.v_posterior * betas + # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) + self.register_buffer('posterior_variance', to_torch(posterior_variance)) + # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain + self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) + self.register_buffer('posterior_mean_coef1', to_torch( + betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) + self.register_buffer('posterior_mean_coef2', to_torch( + (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) + + if self.parameterization == "eps": + lvlb_weights = self.betas ** 2 / ( + 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) + elif self.parameterization == "x0": + lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) + else: + raise NotImplementedError("mu not supported") + # TODO how to choose this term + lvlb_weights[0] = lvlb_weights[1] + self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) + assert not torch.isnan(self.lvlb_weights).all() + + @contextmanager + def ema_scope(self, context=None): + if self.use_ema: + self.model_ema.store(self.model.parameters()) + self.model_ema.copy_to(self.model) + if context is not None: + print(f"{context}: Switched to EMA weights") + try: + yield None + finally: + if self.use_ema: + self.model_ema.restore(self.model.parameters()) + if context is not None: + print(f"{context}: Restored training weights") + + def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): + sd = torch.load(path, map_location="cpu") + if "state_dict" in list(sd.keys()): + sd = sd["state_dict"] + keys = list(sd.keys()) + for k in keys: + for ik in ignore_keys: + if k.startswith(ik): + print("Deleting key {} from state_dict.".format(k)) + del sd[k] + missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( + sd, strict=False) + print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") + if len(missing) > 0: + print(f"Missing Keys: {missing}") + if len(unexpected) > 0: + print(f"Unexpected Keys: {unexpected}") + + def q_mean_variance(self, x_start, t): + """ + Get the distribution q(x_t | x_0). + :param x_start: the [N x C x ...] tensor of noiseless inputs. + :param t: the number of diffusion steps (minus 1). Here, 0 means one step. + :return: A tuple (mean, variance, log_variance), all of x_start's shape. + """ + mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) + variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) + log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) + return mean, variance, log_variance + + def predict_start_from_noise(self, x_t, t, noise): + return ( + extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - + extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise + ) + + def q_posterior(self, x_start, x_t, t): + posterior_mean = ( + extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + + extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t + ) + posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) + posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) + return posterior_mean, posterior_variance, posterior_log_variance_clipped + + def p_mean_variance(self, x, t, clip_denoised: bool): + model_out = self.model(x, t) + if self.parameterization == "eps": + x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) + elif self.parameterization == "x0": + x_recon = model_out + if clip_denoised: + x_recon.clamp_(-1., 1.) + + model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) + return model_mean, posterior_variance, posterior_log_variance + + @torch.no_grad() + def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): + b, *_, device = *x.shape, x.device + model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) + noise = noise_like(x.shape, device, repeat_noise) + # no noise when t == 0 + nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise + + @torch.no_grad() + def p_sample_loop(self, shape, return_intermediates=False): + device = self.betas.device + b = shape[0] + img = torch.randn(shape, device=device) + intermediates = [img] + for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): + img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), + clip_denoised=self.clip_denoised) + if i % self.log_every_t == 0 or i == self.num_timesteps - 1: + intermediates.append(img) + if return_intermediates: + return img, intermediates + return img + + @torch.no_grad() + def sample(self, batch_size=16, return_intermediates=False): + image_size = self.image_size + channels = self.channels + return self.p_sample_loop((batch_size, channels, image_size, image_size), + return_intermediates=return_intermediates) + + def q_sample(self, x_start, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + + extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) + + def get_loss(self, pred, target, mean=True): + if self.loss_type == 'l1': + loss = (target - pred).abs() + if mean: + loss = loss.mean() + elif self.loss_type == 'l2': + if mean: + loss = torch.nn.functional.mse_loss(target, pred) + else: + loss = torch.nn.functional.mse_loss(target, pred, reduction='none') + else: + raise NotImplementedError("unknown loss type '{loss_type}'") + + return loss + + def p_losses(self, x_start, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) + model_out = self.model(x_noisy, t) + + loss_dict = {} + if self.parameterization == "eps": + target = noise + elif self.parameterization == "x0": + target = x_start + else: + raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported") + + loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) + + log_prefix = 'train' if self.training else 'val' + + loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) + loss_simple = loss.mean() * self.l_simple_weight + + loss_vlb = (self.lvlb_weights[t] * loss).mean() + loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) + + loss = loss_simple + self.original_elbo_weight * loss_vlb + + loss_dict.update({f'{log_prefix}/loss': loss}) + + return loss, loss_dict + + def forward(self, x, *args, **kwargs): + # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size + # assert h == img_size and w == img_size, f'height and width of image must be {img_size}' + t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() + return self.p_losses(x, t, *args, **kwargs) + + def get_input(self, batch, k): + x = batch[k] + if len(x.shape) == 3: + x = x[..., None] + x = rearrange(x, 'b h w c -> b c h w') + x = x.to(memory_format=torch.contiguous_format).float() + return x + + def shared_step(self, batch): + x = self.get_input(batch, self.first_stage_key) + loss, loss_dict = self(x) + return loss, loss_dict + + def training_step(self, batch, batch_idx): + loss, loss_dict = self.shared_step(batch) + + self.log_dict(loss_dict, prog_bar=True, + logger=True, on_step=True, on_epoch=True) + + self.log("global_step", self.global_step, + prog_bar=True, logger=True, on_step=True, on_epoch=False) + + if self.use_scheduler: + lr = self.optimizers().param_groups[0]['lr'] + self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) + + return loss + + @torch.no_grad() + def validation_step(self, batch, batch_idx): + _, loss_dict_no_ema = self.shared_step(batch) + with self.ema_scope(): + _, loss_dict_ema = self.shared_step(batch) + loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema} + self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) + self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) + + def on_train_batch_end(self, *args, **kwargs): + if self.use_ema: + self.model_ema(self.model) + + def _get_rows_from_list(self, samples): + n_imgs_per_row = len(samples) + denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') + denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') + denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) + return denoise_grid + + @torch.no_grad() + def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): + log = dict() + x = self.get_input(batch, self.first_stage_key) + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + x = x.to(self.device)[:N] + log["inputs"] = x + + # get diffusion row + diffusion_row = list() + x_start = x[:n_row] + + for t in range(self.num_timesteps): + if t % self.log_every_t == 0 or t == self.num_timesteps - 1: + t = repeat(torch.tensor([t]), '1 -> b', b=n_row) + t = t.to(self.device).long() + noise = torch.randn_like(x_start) + x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) + diffusion_row.append(x_noisy) + + log["diffusion_row"] = self._get_rows_from_list(diffusion_row) + + if sample: + # get denoise row + with self.ema_scope("Plotting"): + samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) + + log["samples"] = samples + log["denoise_row"] = self._get_rows_from_list(denoise_row) + + if return_keys: + if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: + return log + else: + return {key: log[key] for key in return_keys} + return log + + def configure_optimizers(self): + lr = self.learning_rate + params = list(self.model.parameters()) + if self.learn_logvar: + params = params + [self.logvar] + opt = torch.optim.AdamW(params, lr=lr) + return opt + + +class LatentDiffusionV1(DDPMV1): + """main class""" + def __init__(self, + first_stage_config, + cond_stage_config, + num_timesteps_cond=None, + cond_stage_key="image", + cond_stage_trainable=False, + concat_mode=True, + cond_stage_forward=None, + conditioning_key=None, + scale_factor=1.0, + scale_by_std=False, + *args, **kwargs): + self.num_timesteps_cond = default(num_timesteps_cond, 1) + self.scale_by_std = scale_by_std + assert self.num_timesteps_cond <= kwargs['timesteps'] + # for backwards compatibility after implementation of DiffusionWrapper + if conditioning_key is None: + conditioning_key = 'concat' if concat_mode else 'crossattn' + if cond_stage_config == '__is_unconditional__': + conditioning_key = None + ckpt_path = kwargs.pop("ckpt_path", None) + ignore_keys = kwargs.pop("ignore_keys", []) + super().__init__(conditioning_key=conditioning_key, *args, **kwargs) + self.concat_mode = concat_mode + self.cond_stage_trainable = cond_stage_trainable + self.cond_stage_key = cond_stage_key + try: + self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 + except: + self.num_downs = 0 + if not scale_by_std: + self.scale_factor = scale_factor + else: + self.register_buffer('scale_factor', torch.tensor(scale_factor)) + self.instantiate_first_stage(first_stage_config) + self.instantiate_cond_stage(cond_stage_config) + self.cond_stage_forward = cond_stage_forward + self.clip_denoised = False + self.bbox_tokenizer = None + + self.restarted_from_ckpt = False + if ckpt_path is not None: + self.init_from_ckpt(ckpt_path, ignore_keys) + self.restarted_from_ckpt = True + + def make_cond_schedule(self, ): + self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) + ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() + self.cond_ids[:self.num_timesteps_cond] = ids + + @rank_zero_only + @torch.no_grad() + def on_train_batch_start(self, batch, batch_idx, dataloader_idx): + # only for very first batch + if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: + assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' + # set rescale weight to 1./std of encodings + print("### USING STD-RESCALING ###") + x = super().get_input(batch, self.first_stage_key) + x = x.to(self.device) + encoder_posterior = self.encode_first_stage(x) + z = self.get_first_stage_encoding(encoder_posterior).detach() + del self.scale_factor + self.register_buffer('scale_factor', 1. / z.flatten().std()) + print(f"setting self.scale_factor to {self.scale_factor}") + print("### USING STD-RESCALING ###") + + def register_schedule(self, + given_betas=None, beta_schedule="linear", timesteps=1000, + linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): + super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) + + self.shorten_cond_schedule = self.num_timesteps_cond > 1 + if self.shorten_cond_schedule: + self.make_cond_schedule() + + def instantiate_first_stage(self, config): + model = instantiate_from_config(config) + self.first_stage_model = model.eval() + self.first_stage_model.train = disabled_train + for param in self.first_stage_model.parameters(): + param.requires_grad = False + + def instantiate_cond_stage(self, config): + if not self.cond_stage_trainable: + if config == "__is_first_stage__": + print("Using first stage also as cond stage.") + self.cond_stage_model = self.first_stage_model + elif config == "__is_unconditional__": + print(f"Training {self.__class__.__name__} as an unconditional model.") + self.cond_stage_model = None + # self.be_unconditional = True + else: + model = instantiate_from_config(config) + self.cond_stage_model = model.eval() + self.cond_stage_model.train = disabled_train + for param in self.cond_stage_model.parameters(): + param.requires_grad = False + else: + assert config != '__is_first_stage__' + assert config != '__is_unconditional__' + model = instantiate_from_config(config) + self.cond_stage_model = model + + def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): + denoise_row = [] + for zd in tqdm(samples, desc=desc): + denoise_row.append(self.decode_first_stage(zd.to(self.device), + force_not_quantize=force_no_decoder_quantization)) + n_imgs_per_row = len(denoise_row) + denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W + denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') + denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') + denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) + return denoise_grid + + def get_first_stage_encoding(self, encoder_posterior): + if isinstance(encoder_posterior, DiagonalGaussianDistribution): + z = encoder_posterior.sample() + elif isinstance(encoder_posterior, torch.Tensor): + z = encoder_posterior + else: + raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") + return self.scale_factor * z + + def get_learned_conditioning(self, c): + if self.cond_stage_forward is None: + if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): + c = self.cond_stage_model.encode(c) + if isinstance(c, DiagonalGaussianDistribution): + c = c.mode() + else: + c = self.cond_stage_model(c) + else: + assert hasattr(self.cond_stage_model, self.cond_stage_forward) + c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) + return c + + def meshgrid(self, h, w): + y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) + x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) + + arr = torch.cat([y, x], dim=-1) + return arr + + def delta_border(self, h, w): + """ + :param h: height + :param w: width + :return: normalized distance to image border, + wtith min distance = 0 at border and max dist = 0.5 at image center + """ + lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) + arr = self.meshgrid(h, w) / lower_right_corner + dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] + dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] + edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] + return edge_dist + + def get_weighting(self, h, w, Ly, Lx, device): + weighting = self.delta_border(h, w) + weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], + self.split_input_params["clip_max_weight"], ) + weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) + + if self.split_input_params["tie_braker"]: + L_weighting = self.delta_border(Ly, Lx) + L_weighting = torch.clip(L_weighting, + self.split_input_params["clip_min_tie_weight"], + self.split_input_params["clip_max_tie_weight"]) + + L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) + weighting = weighting * L_weighting + return weighting + + def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code + """ + :param x: img of size (bs, c, h, w) + :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) + """ + bs, nc, h, w = x.shape + + # number of crops in image + Ly = (h - kernel_size[0]) // stride[0] + 1 + Lx = (w - kernel_size[1]) // stride[1] + 1 + + if uf == 1 and df == 1: + fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) + unfold = torch.nn.Unfold(**fold_params) + + fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) + + weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) + normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap + weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) + + elif uf > 1 and df == 1: + fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) + unfold = torch.nn.Unfold(**fold_params) + + fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), + dilation=1, padding=0, + stride=(stride[0] * uf, stride[1] * uf)) + fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) + + weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) + normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap + weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) + + elif df > 1 and uf == 1: + fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) + unfold = torch.nn.Unfold(**fold_params) + + fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), + dilation=1, padding=0, + stride=(stride[0] // df, stride[1] // df)) + fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) + + weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) + normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap + weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) + + else: + raise NotImplementedError + + return fold, unfold, normalization, weighting + + @torch.no_grad() + def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, + cond_key=None, return_original_cond=False, bs=None): + x = super().get_input(batch, k) + if bs is not None: + x = x[:bs] + x = x.to(self.device) + encoder_posterior = self.encode_first_stage(x) + z = self.get_first_stage_encoding(encoder_posterior).detach() + + if self.model.conditioning_key is not None: + if cond_key is None: + cond_key = self.cond_stage_key + if cond_key != self.first_stage_key: + if cond_key in ['caption', 'coordinates_bbox']: + xc = batch[cond_key] + elif cond_key == 'class_label': + xc = batch + else: + xc = super().get_input(batch, cond_key).to(self.device) + else: + xc = x + if not self.cond_stage_trainable or force_c_encode: + if isinstance(xc, dict) or isinstance(xc, list): + # import pudb; pudb.set_trace() + c = self.get_learned_conditioning(xc) + else: + c = self.get_learned_conditioning(xc.to(self.device)) + else: + c = xc + if bs is not None: + c = c[:bs] + + if self.use_positional_encodings: + pos_x, pos_y = self.compute_latent_shifts(batch) + ckey = __conditioning_keys__[self.model.conditioning_key] + c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y} + + else: + c = None + xc = None + if self.use_positional_encodings: + pos_x, pos_y = self.compute_latent_shifts(batch) + c = {'pos_x': pos_x, 'pos_y': pos_y} + out = [z, c] + if return_first_stage_outputs: + xrec = self.decode_first_stage(z) + out.extend([x, xrec]) + if return_original_cond: + out.append(xc) + return out + + @torch.no_grad() + def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): + if predict_cids: + if z.dim() == 4: + z = torch.argmax(z.exp(), dim=1).long() + z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) + z = rearrange(z, 'b h w c -> b c h w').contiguous() + + z = 1. / self.scale_factor * z + + if hasattr(self, "split_input_params"): + if self.split_input_params["patch_distributed_vq"]: + ks = self.split_input_params["ks"] # eg. (128, 128) + stride = self.split_input_params["stride"] # eg. (64, 64) + uf = self.split_input_params["vqf"] + bs, nc, h, w = z.shape + if ks[0] > h or ks[1] > w: + ks = (min(ks[0], h), min(ks[1], w)) + print("reducing Kernel") + + if stride[0] > h or stride[1] > w: + stride = (min(stride[0], h), min(stride[1], w)) + print("reducing stride") + + fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) + + z = unfold(z) # (bn, nc * prod(**ks), L) + # 1. Reshape to img shape + z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) + + # 2. apply model loop over last dim + if isinstance(self.first_stage_model, VQModelInterface): + output_list = [self.first_stage_model.decode(z[:, :, :, :, i], + force_not_quantize=predict_cids or force_not_quantize) + for i in range(z.shape[-1])] + else: + + output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) + for i in range(z.shape[-1])] + + o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) + o = o * weighting + # Reverse 1. reshape to img shape + o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) + # stitch crops together + decoded = fold(o) + decoded = decoded / normalization # norm is shape (1, 1, h, w) + return decoded + else: + if isinstance(self.first_stage_model, VQModelInterface): + return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) + else: + return self.first_stage_model.decode(z) + + else: + if isinstance(self.first_stage_model, VQModelInterface): + return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) + else: + return self.first_stage_model.decode(z) + + # same as above but without decorator + def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): + if predict_cids: + if z.dim() == 4: + z = torch.argmax(z.exp(), dim=1).long() + z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) + z = rearrange(z, 'b h w c -> b c h w').contiguous() + + z = 1. / self.scale_factor * z + + if hasattr(self, "split_input_params"): + if self.split_input_params["patch_distributed_vq"]: + ks = self.split_input_params["ks"] # eg. (128, 128) + stride = self.split_input_params["stride"] # eg. (64, 64) + uf = self.split_input_params["vqf"] + bs, nc, h, w = z.shape + if ks[0] > h or ks[1] > w: + ks = (min(ks[0], h), min(ks[1], w)) + print("reducing Kernel") + + if stride[0] > h or stride[1] > w: + stride = (min(stride[0], h), min(stride[1], w)) + print("reducing stride") + + fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) + + z = unfold(z) # (bn, nc * prod(**ks), L) + # 1. Reshape to img shape + z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) + + # 2. apply model loop over last dim + if isinstance(self.first_stage_model, VQModelInterface): + output_list = [self.first_stage_model.decode(z[:, :, :, :, i], + force_not_quantize=predict_cids or force_not_quantize) + for i in range(z.shape[-1])] + else: + + output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) + for i in range(z.shape[-1])] + + o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) + o = o * weighting + # Reverse 1. reshape to img shape + o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) + # stitch crops together + decoded = fold(o) + decoded = decoded / normalization # norm is shape (1, 1, h, w) + return decoded + else: + if isinstance(self.first_stage_model, VQModelInterface): + return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) + else: + return self.first_stage_model.decode(z) + + else: + if isinstance(self.first_stage_model, VQModelInterface): + return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) + else: + return self.first_stage_model.decode(z) + + @torch.no_grad() + def encode_first_stage(self, x): + if hasattr(self, "split_input_params"): + if self.split_input_params["patch_distributed_vq"]: + ks = self.split_input_params["ks"] # eg. (128, 128) + stride = self.split_input_params["stride"] # eg. (64, 64) + df = self.split_input_params["vqf"] + self.split_input_params['original_image_size'] = x.shape[-2:] + bs, nc, h, w = x.shape + if ks[0] > h or ks[1] > w: + ks = (min(ks[0], h), min(ks[1], w)) + print("reducing Kernel") + + if stride[0] > h or stride[1] > w: + stride = (min(stride[0], h), min(stride[1], w)) + print("reducing stride") + + fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df) + z = unfold(x) # (bn, nc * prod(**ks), L) + # Reshape to img shape + z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) + + output_list = [self.first_stage_model.encode(z[:, :, :, :, i]) + for i in range(z.shape[-1])] + + o = torch.stack(output_list, axis=-1) + o = o * weighting + + # Reverse reshape to img shape + o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) + # stitch crops together + decoded = fold(o) + decoded = decoded / normalization + return decoded + + else: + return self.first_stage_model.encode(x) + else: + return self.first_stage_model.encode(x) + + def shared_step(self, batch, **kwargs): + x, c = self.get_input(batch, self.first_stage_key) + loss = self(x, c) + return loss + + def forward(self, x, c, *args, **kwargs): + t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() + if self.model.conditioning_key is not None: + assert c is not None + if self.cond_stage_trainable: + c = self.get_learned_conditioning(c) + if self.shorten_cond_schedule: # TODO: drop this option + tc = self.cond_ids[t].to(self.device) + c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) + return self.p_losses(x, c, t, *args, **kwargs) + + def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset + def rescale_bbox(bbox): + x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2]) + y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3]) + w = min(bbox[2] / crop_coordinates[2], 1 - x0) + h = min(bbox[3] / crop_coordinates[3], 1 - y0) + return x0, y0, w, h + + return [rescale_bbox(b) for b in bboxes] + + def apply_model(self, x_noisy, t, cond, return_ids=False): + + if isinstance(cond, dict): + # hybrid case, cond is exptected to be a dict + pass + else: + if not isinstance(cond, list): + cond = [cond] + key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' + cond = {key: cond} + + if hasattr(self, "split_input_params"): + assert len(cond) == 1 # todo can only deal with one conditioning atm + assert not return_ids + ks = self.split_input_params["ks"] # eg. (128, 128) + stride = self.split_input_params["stride"] # eg. (64, 64) + + h, w = x_noisy.shape[-2:] + + fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride) + + z = unfold(x_noisy) # (bn, nc * prod(**ks), L) + # Reshape to img shape + z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) + z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])] + + if self.cond_stage_key in ["image", "LR_image", "segmentation", + 'bbox_img'] and self.model.conditioning_key: # todo check for completeness + c_key = next(iter(cond.keys())) # get key + c = next(iter(cond.values())) # get value + assert (len(c) == 1) # todo extend to list with more than one elem + c = c[0] # get element + + c = unfold(c) + c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L ) + + cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])] + + elif self.cond_stage_key == 'coordinates_bbox': + assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size' + + # assuming padding of unfold is always 0 and its dilation is always 1 + n_patches_per_row = int((w - ks[0]) / stride[0] + 1) + full_img_h, full_img_w = self.split_input_params['original_image_size'] + # as we are operating on latents, we need the factor from the original image size to the + # spatial latent size to properly rescale the crops for regenerating the bbox annotations + num_downs = self.first_stage_model.encoder.num_resolutions - 1 + rescale_latent = 2 ** (num_downs) + + # get top left postions of patches as conforming for the bbbox tokenizer, therefore we + # need to rescale the tl patch coordinates to be in between (0,1) + tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w, + rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h) + for patch_nr in range(z.shape[-1])] + + # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w) + patch_limits = [(x_tl, y_tl, + rescale_latent * ks[0] / full_img_w, + rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates] + # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates] + + # tokenize crop coordinates for the bounding boxes of the respective patches + patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device) + for bbox in patch_limits] # list of length l with tensors of shape (1, 2) + print(patch_limits_tknzd[0].shape) + # cut tknzd crop position from conditioning + assert isinstance(cond, dict), 'cond must be dict to be fed into model' + cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device) + print(cut_cond.shape) + + adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd]) + adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n') + print(adapted_cond.shape) + adapted_cond = self.get_learned_conditioning(adapted_cond) + print(adapted_cond.shape) + adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]) + print(adapted_cond.shape) + + cond_list = [{'c_crossattn': [e]} for e in adapted_cond] + + else: + cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient + + # apply model by loop over crops + output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])] + assert not isinstance(output_list[0], + tuple) # todo cant deal with multiple model outputs check this never happens + + o = torch.stack(output_list, axis=-1) + o = o * weighting + # Reverse reshape to img shape + o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) + # stitch crops together + x_recon = fold(o) / normalization + + else: + x_recon = self.model(x_noisy, t, **cond) + + if isinstance(x_recon, tuple) and not return_ids: + return x_recon[0] + else: + return x_recon + + def _predict_eps_from_xstart(self, x_t, t, pred_xstart): + return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ + extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) + + def _prior_bpd(self, x_start): + """ + Get the prior KL term for the variational lower-bound, measured in + bits-per-dim. + This term can't be optimized, as it only depends on the encoder. + :param x_start: the [N x C x ...] tensor of inputs. + :return: a batch of [N] KL values (in bits), one per batch element. + """ + batch_size = x_start.shape[0] + t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) + qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) + kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) + return mean_flat(kl_prior) / np.log(2.0) + + def p_losses(self, x_start, cond, t, noise=None): + noise = default(noise, lambda: torch.randn_like(x_start)) + x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) + model_output = self.apply_model(x_noisy, t, cond) + + loss_dict = {} + prefix = 'train' if self.training else 'val' + + if self.parameterization == "x0": + target = x_start + elif self.parameterization == "eps": + target = noise + else: + raise NotImplementedError() + + loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) + loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) + + logvar_t = self.logvar[t].to(self.device) + loss = loss_simple / torch.exp(logvar_t) + logvar_t + # loss = loss_simple / torch.exp(self.logvar) + self.logvar + if self.learn_logvar: + loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) + loss_dict.update({'logvar': self.logvar.data.mean()}) + + loss = self.l_simple_weight * loss.mean() + + loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) + loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() + loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) + loss += (self.original_elbo_weight * loss_vlb) + loss_dict.update({f'{prefix}/loss': loss}) + + return loss, loss_dict + + def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, + return_x0=False, score_corrector=None, corrector_kwargs=None): + t_in = t + model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) + + if score_corrector is not None: + assert self.parameterization == "eps" + model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) + + if return_codebook_ids: + model_out, logits = model_out + + if self.parameterization == "eps": + x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) + elif self.parameterization == "x0": + x_recon = model_out + else: + raise NotImplementedError() + + if clip_denoised: + x_recon.clamp_(-1., 1.) + if quantize_denoised: + x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) + model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) + if return_codebook_ids: + return model_mean, posterior_variance, posterior_log_variance, logits + elif return_x0: + return model_mean, posterior_variance, posterior_log_variance, x_recon + else: + return model_mean, posterior_variance, posterior_log_variance + + @torch.no_grad() + def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, + return_codebook_ids=False, quantize_denoised=False, return_x0=False, + temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): + b, *_, device = *x.shape, x.device + outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, + return_codebook_ids=return_codebook_ids, + quantize_denoised=quantize_denoised, + return_x0=return_x0, + score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) + if return_codebook_ids: + raise DeprecationWarning("Support dropped.") + model_mean, _, model_log_variance, logits = outputs + elif return_x0: + model_mean, _, model_log_variance, x0 = outputs + else: + model_mean, _, model_log_variance = outputs + + noise = noise_like(x.shape, device, repeat_noise) * temperature + if noise_dropout > 0.: + noise = torch.nn.functional.dropout(noise, p=noise_dropout) + # no noise when t == 0 + nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) + + if return_codebook_ids: + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) + if return_x0: + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 + else: + return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise + + @torch.no_grad() + def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, + img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., + score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, + log_every_t=None): + if not log_every_t: + log_every_t = self.log_every_t + timesteps = self.num_timesteps + if batch_size is not None: + b = batch_size if batch_size is not None else shape[0] + shape = [batch_size] + list(shape) + else: + b = batch_size = shape[0] + if x_T is None: + img = torch.randn(shape, device=self.device) + else: + img = x_T + intermediates = [] + if cond is not None: + if isinstance(cond, dict): + cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else + list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + else: + cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] + + if start_T is not None: + timesteps = min(timesteps, start_T) + iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', + total=timesteps) if verbose else reversed( + range(0, timesteps)) + if type(temperature) == float: + temperature = [temperature] * timesteps + + for i in iterator: + ts = torch.full((b,), i, device=self.device, dtype=torch.long) + if self.shorten_cond_schedule: + assert self.model.conditioning_key != 'hybrid' + tc = self.cond_ids[ts].to(cond.device) + cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) + + img, x0_partial = self.p_sample(img, cond, ts, + clip_denoised=self.clip_denoised, + quantize_denoised=quantize_denoised, return_x0=True, + temperature=temperature[i], noise_dropout=noise_dropout, + score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) + if mask is not None: + assert x0 is not None + img_orig = self.q_sample(x0, ts) + img = img_orig * mask + (1. - mask) * img + + if i % log_every_t == 0 or i == timesteps - 1: + intermediates.append(x0_partial) + if callback: callback(i) + if img_callback: img_callback(img, i) + return img, intermediates + + @torch.no_grad() + def p_sample_loop(self, cond, shape, return_intermediates=False, + x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, + mask=None, x0=None, img_callback=None, start_T=None, + log_every_t=None): + + if not log_every_t: + log_every_t = self.log_every_t + device = self.betas.device + b = shape[0] + if x_T is None: + img = torch.randn(shape, device=device) + else: + img = x_T + + intermediates = [img] + if timesteps is None: + timesteps = self.num_timesteps + + if start_T is not None: + timesteps = min(timesteps, start_T) + iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( + range(0, timesteps)) + + if mask is not None: + assert x0 is not None + assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match + + for i in iterator: + ts = torch.full((b,), i, device=device, dtype=torch.long) + if self.shorten_cond_schedule: + assert self.model.conditioning_key != 'hybrid' + tc = self.cond_ids[ts].to(cond.device) + cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) + + img = self.p_sample(img, cond, ts, + clip_denoised=self.clip_denoised, + quantize_denoised=quantize_denoised) + if mask is not None: + img_orig = self.q_sample(x0, ts) + img = img_orig * mask + (1. - mask) * img + + if i % log_every_t == 0 or i == timesteps - 1: + intermediates.append(img) + if callback: callback(i) + if img_callback: img_callback(img, i) + + if return_intermediates: + return img, intermediates + return img + + @torch.no_grad() + def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, + verbose=True, timesteps=None, quantize_denoised=False, + mask=None, x0=None, shape=None,**kwargs): + if shape is None: + shape = (batch_size, self.channels, self.image_size, self.image_size) + if cond is not None: + if isinstance(cond, dict): + cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else + list(map(lambda x: x[:batch_size], cond[key])) for key in cond} + else: + cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] + return self.p_sample_loop(cond, + shape, + return_intermediates=return_intermediates, x_T=x_T, + verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, + mask=mask, x0=x0) + + @torch.no_grad() + def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): + + if ddim: + ddim_sampler = DDIMSampler(self) + shape = (self.channels, self.image_size, self.image_size) + samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size, + shape,cond,verbose=False,**kwargs) + + else: + samples, intermediates = self.sample(cond=cond, batch_size=batch_size, + return_intermediates=True,**kwargs) + + return samples, intermediates + + + @torch.no_grad() + def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, + quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True, + plot_diffusion_rows=True, **kwargs): + + use_ddim = ddim_steps is not None + + log = dict() + z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, + return_first_stage_outputs=True, + force_c_encode=True, + return_original_cond=True, + bs=N) + N = min(x.shape[0], N) + n_row = min(x.shape[0], n_row) + log["inputs"] = x + log["reconstruction"] = xrec + if self.model.conditioning_key is not None: + if hasattr(self.cond_stage_model, "decode"): + xc = self.cond_stage_model.decode(c) + log["conditioning"] = xc + elif self.cond_stage_key in ["caption"]: + xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"]) + log["conditioning"] = xc + elif self.cond_stage_key == 'class_label': + xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) + log['conditioning'] = xc + elif isimage(xc): + log["conditioning"] = xc + if ismap(xc): + log["original_conditioning"] = self.to_rgb(xc) + + if plot_diffusion_rows: + # get diffusion row + diffusion_row = list() + z_start = z[:n_row] + for t in range(self.num_timesteps): + if t % self.log_every_t == 0 or t == self.num_timesteps - 1: + t = repeat(torch.tensor([t]), '1 -> b', b=n_row) + t = t.to(self.device).long() + noise = torch.randn_like(z_start) + z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) + diffusion_row.append(self.decode_first_stage(z_noisy)) + + diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W + diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') + diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') + diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) + log["diffusion_row"] = diffusion_grid + + if sample: + # get denoise row + with self.ema_scope("Plotting"): + samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, + ddim_steps=ddim_steps,eta=ddim_eta) + # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) + x_samples = self.decode_first_stage(samples) + log["samples"] = x_samples + if plot_denoise_rows: + denoise_grid = self._get_denoise_row_from_list(z_denoise_row) + log["denoise_row"] = denoise_grid + + if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( + self.first_stage_model, IdentityFirstStage): + # also display when quantizing x0 while sampling + with self.ema_scope("Plotting Quantized Denoised"): + samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, + ddim_steps=ddim_steps,eta=ddim_eta, + quantize_denoised=True) + # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, + # quantize_denoised=True) + x_samples = self.decode_first_stage(samples.to(self.device)) + log["samples_x0_quantized"] = x_samples + + if inpaint: + # make a simple center square + b, h, w = z.shape[0], z.shape[2], z.shape[3] + mask = torch.ones(N, h, w).to(self.device) + # zeros will be filled in + mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. + mask = mask[:, None, ...] + with self.ema_scope("Plotting Inpaint"): + + samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, + ddim_steps=ddim_steps, x0=z[:N], mask=mask) + x_samples = self.decode_first_stage(samples.to(self.device)) + log["samples_inpainting"] = x_samples + log["mask"] = mask + + # outpaint + with self.ema_scope("Plotting Outpaint"): + samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, + ddim_steps=ddim_steps, x0=z[:N], mask=mask) + x_samples = self.decode_first_stage(samples.to(self.device)) + log["samples_outpainting"] = x_samples + + if plot_progressive_rows: + with self.ema_scope("Plotting Progressives"): + img, progressives = self.progressive_denoising(c, + shape=(self.channels, self.image_size, self.image_size), + batch_size=N) + prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") + log["progressive_row"] = prog_row + + if return_keys: + if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: + return log + else: + return {key: log[key] for key in return_keys} + return log + + def configure_optimizers(self): + lr = self.learning_rate + params = list(self.model.parameters()) + if self.cond_stage_trainable: + print(f"{self.__class__.__name__}: Also optimizing conditioner params!") + params = params + list(self.cond_stage_model.parameters()) + if self.learn_logvar: + print('Diffusion model optimizing logvar') + params.append(self.logvar) + opt = torch.optim.AdamW(params, lr=lr) + if self.use_scheduler: + assert 'target' in self.scheduler_config + scheduler = instantiate_from_config(self.scheduler_config) + + print("Setting up LambdaLR scheduler...") + scheduler = [ + { + 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), + 'interval': 'step', + 'frequency': 1 + }] + return [opt], scheduler + return opt + + @torch.no_grad() + def to_rgb(self, x): + x = x.float() + if not hasattr(self, "colorize"): + self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) + x = nn.functional.conv2d(x, weight=self.colorize) + x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. + return x + + +class DiffusionWrapperV1(pl.LightningModule): + def __init__(self, diff_model_config, conditioning_key): + super().__init__() + self.diffusion_model = instantiate_from_config(diff_model_config) + self.conditioning_key = conditioning_key + assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm'] + + def forward(self, x, t, c_concat: list = None, c_crossattn: list = None): + if self.conditioning_key is None: + out = self.diffusion_model(x, t) + elif self.conditioning_key == 'concat': + xc = torch.cat([x] + c_concat, dim=1) + out = self.diffusion_model(xc, t) + elif self.conditioning_key == 'crossattn': + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(x, t, context=cc) + elif self.conditioning_key == 'hybrid': + xc = torch.cat([x] + c_concat, dim=1) + cc = torch.cat(c_crossattn, 1) + out = self.diffusion_model(xc, t, context=cc) + elif self.conditioning_key == 'adm': + cc = c_crossattn[0] + out = self.diffusion_model(x, t, y=cc) + else: + raise NotImplementedError() + + return out + + +class Layout2ImgDiffusionV1(LatentDiffusionV1): + # TODO: move all layout-specific hacks to this class + def __init__(self, cond_stage_key, *args, **kwargs): + assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' + super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs) + + def log_images(self, batch, N=8, *args, **kwargs): + logs = super().log_images(batch=batch, N=N, *args, **kwargs) + + key = 'train' if self.training else 'validation' + dset = self.trainer.datamodule.datasets[key] + mapper = dset.conditional_builders[self.cond_stage_key] + + bbox_imgs = [] + map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno)) + for tknzd_bbox in batch[self.cond_stage_key][:N]: + bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256)) + bbox_imgs.append(bboximg) + + cond_img = torch.stack(bbox_imgs, dim=0) + logs['bbox_image'] = cond_img + return logs + +setattr(ldm.models.diffusion.ddpm, "DDPMV1", DDPMV1) +setattr(ldm.models.diffusion.ddpm, "LatentDiffusionV1", LatentDiffusionV1) +setattr(ldm.models.diffusion.ddpm, "DiffusionWrapperV1", DiffusionWrapperV1) +setattr(ldm.models.diffusion.ddpm, "Layout2ImgDiffusionV1", Layout2ImgDiffusionV1) diff --git a/extensions-builtin/Lora/extra_networks_lora.py b/extensions-builtin/Lora/extra_networks_lora.py new file mode 100644 index 0000000000000000000000000000000000000000..db63a4bb819b91ba363396a0777f7af52f9713ae --- /dev/null +++ b/extensions-builtin/Lora/extra_networks_lora.py @@ -0,0 +1,26 @@ +from modules import extra_networks, shared +import lora + +class ExtraNetworkLora(extra_networks.ExtraNetwork): + def __init__(self): + super().__init__('lora') + + def activate(self, p, params_list): + additional = shared.opts.sd_lora + + if additional != "" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0: + p.all_prompts = [x + f"" for x in p.all_prompts] + params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier])) + + names = [] + multipliers = [] + for params in params_list: + assert len(params.items) > 0 + + names.append(params.items[0]) + multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0) + + lora.load_loras(names, multipliers) + + def deactivate(self, p): + pass diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py new file mode 100644 index 0000000000000000000000000000000000000000..42b9eb56aaf5c1f5c8d2a6a97a144680faee78a7 --- /dev/null +++ b/extensions-builtin/Lora/lora.py @@ -0,0 +1,207 @@ +import glob +import os +import re +import torch + +from modules import shared, devices, sd_models + +re_digits = re.compile(r"\d+") +re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)") +re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)") +re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)") +re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)") + + +def convert_diffusers_name_to_compvis(key): + def match(match_list, regex): + r = re.match(regex, key) + if not r: + return False + + match_list.clear() + match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()]) + return True + + m = [] + + if match(m, re_unet_down_blocks): + return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}" + + if match(m, re_unet_mid_blocks): + return f"diffusion_model_middle_block_1_{m[1]}" + + if match(m, re_unet_up_blocks): + return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}" + + if match(m, re_text_block): + return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}" + + return key + + +class LoraOnDisk: + def __init__(self, name, filename): + self.name = name + self.filename = filename + + +class LoraModule: + def __init__(self, name): + self.name = name + self.multiplier = 1.0 + self.modules = {} + self.mtime = None + + +class LoraUpDownModule: + def __init__(self): + self.up = None + self.down = None + self.alpha = None + + +def assign_lora_names_to_compvis_modules(sd_model): + lora_layer_mapping = {} + + for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules(): + lora_name = name.replace(".", "_") + lora_layer_mapping[lora_name] = module + module.lora_layer_name = lora_name + + for name, module in shared.sd_model.model.named_modules(): + lora_name = name.replace(".", "_") + lora_layer_mapping[lora_name] = module + module.lora_layer_name = lora_name + + sd_model.lora_layer_mapping = lora_layer_mapping + + +def load_lora(name, filename): + lora = LoraModule(name) + lora.mtime = os.path.getmtime(filename) + + sd = sd_models.read_state_dict(filename) + + keys_failed_to_match = [] + + for key_diffusers, weight in sd.items(): + fullkey = convert_diffusers_name_to_compvis(key_diffusers) + key, lora_key = fullkey.split(".", 1) + + sd_module = shared.sd_model.lora_layer_mapping.get(key, None) + if sd_module is None: + keys_failed_to_match.append(key_diffusers) + continue + + lora_module = lora.modules.get(key, None) + if lora_module is None: + lora_module = LoraUpDownModule() + lora.modules[key] = lora_module + + if lora_key == "alpha": + lora_module.alpha = weight.item() + continue + + if type(sd_module) == torch.nn.Linear: + module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) + elif type(sd_module) == torch.nn.Conv2d: + module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) + else: + assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}' + + with torch.no_grad(): + module.weight.copy_(weight) + + module.to(device=devices.device, dtype=devices.dtype) + + if lora_key == "lora_up.weight": + lora_module.up = module + elif lora_key == "lora_down.weight": + lora_module.down = module + else: + assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha' + + if len(keys_failed_to_match) > 0: + print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}") + + return lora + + +def load_loras(names, multipliers=None): + already_loaded = {} + + for lora in loaded_loras: + if lora.name in names: + already_loaded[lora.name] = lora + + loaded_loras.clear() + + loras_on_disk = [available_loras.get(name, None) for name in names] + if any([x is None for x in loras_on_disk]): + list_available_loras() + + loras_on_disk = [available_loras.get(name, None) for name in names] + + for i, name in enumerate(names): + lora = already_loaded.get(name, None) + + lora_on_disk = loras_on_disk[i] + if lora_on_disk is not None: + if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime: + lora = load_lora(name, lora_on_disk.filename) + + if lora is None: + print(f"Couldn't find Lora with name {name}") + continue + + lora.multiplier = multipliers[i] if multipliers else 1.0 + loaded_loras.append(lora) + + +def lora_forward(module, input, res): + if len(loaded_loras) == 0: + return res + + lora_layer_name = getattr(module, 'lora_layer_name', None) + for lora in loaded_loras: + module = lora.modules.get(lora_layer_name, None) + if module is not None: + if shared.opts.lora_apply_to_outputs and res.shape == input.shape: + res = res + module.up(module.down(res)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0) + else: + res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0) + + return res + + +def lora_Linear_forward(self, input): + return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input)) + + +def lora_Conv2d_forward(self, input): + return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input)) + + +def list_available_loras(): + available_loras.clear() + + os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True) + + candidates = \ + glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.pt'), recursive=True) + \ + glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.safetensors'), recursive=True) + \ + glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.ckpt'), recursive=True) + + for filename in sorted(candidates): + if os.path.isdir(filename): + continue + + name = os.path.splitext(os.path.basename(filename))[0] + + available_loras[name] = LoraOnDisk(name, filename) + + +available_loras = {} +loaded_loras = [] + +list_available_loras() diff --git a/extensions-builtin/Lora/preload.py b/extensions-builtin/Lora/preload.py new file mode 100644 index 0000000000000000000000000000000000000000..c47d7ef4e24893953e51b8dfb5a7ccf88c574546 --- /dev/null +++ b/extensions-builtin/Lora/preload.py @@ -0,0 +1,6 @@ +import os +from modules import paths + + +def preload(parser): + parser.add_argument("--lora-dir", type=str, help="Path to directory with Lora networks.", default=os.path.join(paths.models_path, 'Lora')) diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py new file mode 100644 index 0000000000000000000000000000000000000000..29ec16018858f4210f00c83a6e18c0cb7adb5e40 --- /dev/null +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -0,0 +1,38 @@ +import torch +import gradio as gr + +import lora +import extra_networks_lora +import ui_extra_networks_lora +from modules import script_callbacks, ui_extra_networks, extra_networks, shared + + +def unload(): + torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora + torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora + + +def before_ui(): + ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora()) + extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora()) + + +if not hasattr(torch.nn, 'Linear_forward_before_lora'): + torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward + +if not hasattr(torch.nn, 'Conv2d_forward_before_lora'): + torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward + +torch.nn.Linear.forward = lora.lora_Linear_forward +torch.nn.Conv2d.forward = lora.lora_Conv2d_forward + +script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules) +script_callbacks.on_script_unloaded(unload) +script_callbacks.on_before_ui(before_ui) + + +shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), { + "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras), + "lora_apply_to_outputs": shared.OptionInfo(False, "Apply Lora to outputs rather than inputs when possible (experimental)"), + +})) diff --git a/extensions-builtin/Lora/ui_extra_networks_lora.py b/extensions-builtin/Lora/ui_extra_networks_lora.py new file mode 100644 index 0000000000000000000000000000000000000000..d2dca927b0a84f28ceeffa7347c8b60ec88698a6 --- /dev/null +++ b/extensions-builtin/Lora/ui_extra_networks_lora.py @@ -0,0 +1,37 @@ +import json +import os +import lora + +from modules import shared, ui_extra_networks + + +class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage): + def __init__(self): + super().__init__('Lora') + + def refresh(self): + lora.list_available_loras() + + def list_items(self): + for name, lora_on_disk in lora.available_loras.items(): + path, ext = os.path.splitext(lora_on_disk.filename) + previews = [path + ".png", path + ".preview.png"] + + preview = None + for file in previews: + if os.path.isfile(file): + preview = self.link_preview(file) + break + + yield { + "name": name, + "filename": path, + "preview": preview, + "search_term": self.search_terms_from_path(lora_on_disk.filename), + "prompt": json.dumps(f""), + "local_preview": path + ".png", + } + + def allowed_directories_for_previews(self): + return [shared.cmd_opts.lora_dir] + diff --git a/extensions-builtin/ScuNET/preload.py b/extensions-builtin/ScuNET/preload.py new file mode 100644 index 0000000000000000000000000000000000000000..4ce82b1d4349b24192b1915d022ed4fda9f31e5c --- /dev/null +++ b/extensions-builtin/ScuNET/preload.py @@ -0,0 +1,6 @@ +import os +from modules import paths + + +def preload(parser): + parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(paths.models_path, 'ScuNET')) diff --git a/extensions-builtin/ScuNET/scripts/scunet_model.py b/extensions-builtin/ScuNET/scripts/scunet_model.py new file mode 100644 index 0000000000000000000000000000000000000000..e0fbf3a33747f447d396dd0d564e92c904cfabac --- /dev/null +++ b/extensions-builtin/ScuNET/scripts/scunet_model.py @@ -0,0 +1,87 @@ +import os.path +import sys +import traceback + +import PIL.Image +import numpy as np +import torch +from basicsr.utils.download_util import load_file_from_url + +import modules.upscaler +from modules import devices, modelloader +from scunet_model_arch import SCUNet as net + + +class UpscalerScuNET(modules.upscaler.Upscaler): + def __init__(self, dirname): + self.name = "ScuNET" + self.model_name = "ScuNET GAN" + self.model_name2 = "ScuNET PSNR" + self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth" + self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth" + self.user_path = dirname + super().__init__() + model_paths = self.find_models(ext_filter=[".pth"]) + scalers = [] + add_model2 = True + for file in model_paths: + if "http" in file: + name = self.model_name + else: + name = modelloader.friendly_name(file) + if name == self.model_name2 or file == self.model_url2: + add_model2 = False + try: + scaler_data = modules.upscaler.UpscalerData(name, file, self, 4) + scalers.append(scaler_data) + except Exception: + print(f"Error loading ScuNET model: {file}", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + if add_model2: + scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self) + scalers.append(scaler_data2) + self.scalers = scalers + + def do_upscale(self, img: PIL.Image, selected_file): + torch.cuda.empty_cache() + + model = self.load_model(selected_file) + if model is None: + return img + + device = devices.get_device_for('scunet') + img = np.array(img) + img = img[:, :, ::-1] + img = np.moveaxis(img, 2, 0) / 255 + img = torch.from_numpy(img).float() + img = img.unsqueeze(0).to(device) + + with torch.no_grad(): + output = model(img) + output = output.squeeze().float().cpu().clamp_(0, 1).numpy() + output = 255. * np.moveaxis(output, 0, 2) + output = output.astype(np.uint8) + output = output[:, :, ::-1] + torch.cuda.empty_cache() + return PIL.Image.fromarray(output, 'RGB') + + def load_model(self, path: str): + device = devices.get_device_for('scunet') + if "http" in path: + filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name, + progress=True) + else: + filename = path + if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None: + print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr) + return None + + model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64) + model.load_state_dict(torch.load(filename), strict=True) + model.eval() + for k, v in model.named_parameters(): + v.requires_grad = False + model = model.to(device) + + return model + diff --git a/extensions-builtin/ScuNET/scunet_model_arch.py b/extensions-builtin/ScuNET/scunet_model_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..43ca8d36fe57a12dcad58e8b06ee2e0774494b0e --- /dev/null +++ b/extensions-builtin/ScuNET/scunet_model_arch.py @@ -0,0 +1,265 @@ +# -*- coding: utf-8 -*- +import numpy as np +import torch +import torch.nn as nn +from einops import rearrange +from einops.layers.torch import Rearrange +from timm.models.layers import trunc_normal_, DropPath + + +class WMSA(nn.Module): + """ Self-attention module in Swin Transformer + """ + + def __init__(self, input_dim, output_dim, head_dim, window_size, type): + super(WMSA, self).__init__() + self.input_dim = input_dim + self.output_dim = output_dim + self.head_dim = head_dim + self.scale = self.head_dim ** -0.5 + self.n_heads = input_dim // head_dim + self.window_size = window_size + self.type = type + self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True) + + self.relative_position_params = nn.Parameter( + torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads)) + + self.linear = nn.Linear(self.input_dim, self.output_dim) + + trunc_normal_(self.relative_position_params, std=.02) + self.relative_position_params = torch.nn.Parameter( + self.relative_position_params.view(2 * window_size - 1, 2 * window_size - 1, self.n_heads).transpose(1, + 2).transpose( + 0, 1)) + + def generate_mask(self, h, w, p, shift): + """ generating the mask of SW-MSA + Args: + shift: shift parameters in CyclicShift. + Returns: + attn_mask: should be (1 1 w p p), + """ + # supporting square. + attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device) + if self.type == 'W': + return attn_mask + + s = p - shift + attn_mask[-1, :, :s, :, s:, :] = True + attn_mask[-1, :, s:, :, :s, :] = True + attn_mask[:, -1, :, :s, :, s:] = True + attn_mask[:, -1, :, s:, :, :s] = True + attn_mask = rearrange(attn_mask, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)') + return attn_mask + + def forward(self, x): + """ Forward pass of Window Multi-head Self-attention module. + Args: + x: input tensor with shape of [b h w c]; + attn_mask: attention mask, fill -inf where the value is True; + Returns: + output: tensor shape [b h w c] + """ + if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2)) + x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size) + h_windows = x.size(1) + w_windows = x.size(2) + # square validation + # assert h_windows == w_windows + + x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size) + qkv = self.embedding_layer(x) + q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0) + sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale + # Adding learnable relative embedding + sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q') + # Using Attn Mask to distinguish different subwindows. + if self.type != 'W': + attn_mask = self.generate_mask(h_windows, w_windows, self.window_size, shift=self.window_size // 2) + sim = sim.masked_fill_(attn_mask, float("-inf")) + + probs = nn.functional.softmax(sim, dim=-1) + output = torch.einsum('hbwij,hbwjc->hbwic', probs, v) + output = rearrange(output, 'h b w p c -> b w p (h c)') + output = self.linear(output) + output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size) + + if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), + dims=(1, 2)) + return output + + def relative_embedding(self): + cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)])) + relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1 + # negative is allowed + return self.relative_position_params[:, relation[:, :, 0].long(), relation[:, :, 1].long()] + + +class Block(nn.Module): + def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None): + """ SwinTransformer Block + """ + super(Block, self).__init__() + self.input_dim = input_dim + self.output_dim = output_dim + assert type in ['W', 'SW'] + self.type = type + if input_resolution <= window_size: + self.type = 'W' + + self.ln1 = nn.LayerNorm(input_dim) + self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.ln2 = nn.LayerNorm(input_dim) + self.mlp = nn.Sequential( + nn.Linear(input_dim, 4 * input_dim), + nn.GELU(), + nn.Linear(4 * input_dim, output_dim), + ) + + def forward(self, x): + x = x + self.drop_path(self.msa(self.ln1(x))) + x = x + self.drop_path(self.mlp(self.ln2(x))) + return x + + +class ConvTransBlock(nn.Module): + def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None): + """ SwinTransformer and Conv Block + """ + super(ConvTransBlock, self).__init__() + self.conv_dim = conv_dim + self.trans_dim = trans_dim + self.head_dim = head_dim + self.window_size = window_size + self.drop_path = drop_path + self.type = type + self.input_resolution = input_resolution + + assert self.type in ['W', 'SW'] + if self.input_resolution <= self.window_size: + self.type = 'W' + + self.trans_block = Block(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path, + self.type, self.input_resolution) + self.conv1_1 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True) + self.conv1_2 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True) + + self.conv_block = nn.Sequential( + nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False), + nn.ReLU(True), + nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False) + ) + + def forward(self, x): + conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1) + conv_x = self.conv_block(conv_x) + conv_x + trans_x = Rearrange('b c h w -> b h w c')(trans_x) + trans_x = self.trans_block(trans_x) + trans_x = Rearrange('b h w c -> b c h w')(trans_x) + res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1)) + x = x + res + + return x + + +class SCUNet(nn.Module): + # def __init__(self, in_nc=3, config=[2, 2, 2, 2, 2, 2, 2], dim=64, drop_path_rate=0.0, input_resolution=256): + def __init__(self, in_nc=3, config=None, dim=64, drop_path_rate=0.0, input_resolution=256): + super(SCUNet, self).__init__() + if config is None: + config = [2, 2, 2, 2, 2, 2, 2] + self.config = config + self.dim = dim + self.head_dim = 32 + self.window_size = 8 + + # drop path rate for each layer + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))] + + self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)] + + begin = 0 + self.m_down1 = [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin], + 'W' if not i % 2 else 'SW', input_resolution) + for i in range(config[0])] + \ + [nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)] + + begin += config[0] + self.m_down2 = [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin], + 'W' if not i % 2 else 'SW', input_resolution // 2) + for i in range(config[1])] + \ + [nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)] + + begin += config[1] + self.m_down3 = [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin], + 'W' if not i % 2 else 'SW', input_resolution // 4) + for i in range(config[2])] + \ + [nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)] + + begin += config[2] + self.m_body = [ConvTransBlock(4 * dim, 4 * dim, self.head_dim, self.window_size, dpr[i + begin], + 'W' if not i % 2 else 'SW', input_resolution // 8) + for i in range(config[3])] + + begin += config[3] + self.m_up3 = [nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False), ] + \ + [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin], + 'W' if not i % 2 else 'SW', input_resolution // 4) + for i in range(config[4])] + + begin += config[4] + self.m_up2 = [nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False), ] + \ + [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin], + 'W' if not i % 2 else 'SW', input_resolution // 2) + for i in range(config[5])] + + begin += config[5] + self.m_up1 = [nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False), ] + \ + [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin], + 'W' if not i % 2 else 'SW', input_resolution) + for i in range(config[6])] + + self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)] + + self.m_head = nn.Sequential(*self.m_head) + self.m_down1 = nn.Sequential(*self.m_down1) + self.m_down2 = nn.Sequential(*self.m_down2) + self.m_down3 = nn.Sequential(*self.m_down3) + self.m_body = nn.Sequential(*self.m_body) + self.m_up3 = nn.Sequential(*self.m_up3) + self.m_up2 = nn.Sequential(*self.m_up2) + self.m_up1 = nn.Sequential(*self.m_up1) + self.m_tail = nn.Sequential(*self.m_tail) + # self.apply(self._init_weights) + + def forward(self, x0): + + h, w = x0.size()[-2:] + paddingBottom = int(np.ceil(h / 64) * 64 - h) + paddingRight = int(np.ceil(w / 64) * 64 - w) + x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0) + + x1 = self.m_head(x0) + x2 = self.m_down1(x1) + x3 = self.m_down2(x2) + x4 = self.m_down3(x3) + x = self.m_body(x4) + x = self.m_up3(x + x4) + x = self.m_up2(x + x3) + x = self.m_up1(x + x2) + x = self.m_tail(x + x1) + + x = x[..., :h, :w] + + return x + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) \ No newline at end of file diff --git a/extensions-builtin/SwinIR/preload.py b/extensions-builtin/SwinIR/preload.py new file mode 100644 index 0000000000000000000000000000000000000000..e912c6402bc80faa797cf2e95183101fb9a10286 --- /dev/null +++ b/extensions-builtin/SwinIR/preload.py @@ -0,0 +1,6 @@ +import os +from modules import paths + + +def preload(parser): + parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(paths.models_path, 'SwinIR')) diff --git a/extensions-builtin/SwinIR/scripts/swinir_model.py b/extensions-builtin/SwinIR/scripts/swinir_model.py new file mode 100644 index 0000000000000000000000000000000000000000..e8783bca153954afd086536a6dee854ec5e17ba9 --- /dev/null +++ b/extensions-builtin/SwinIR/scripts/swinir_model.py @@ -0,0 +1,178 @@ +import contextlib +import os + +import numpy as np +import torch +from PIL import Image +from basicsr.utils.download_util import load_file_from_url +from tqdm import tqdm + +from modules import modelloader, devices, script_callbacks, shared +from modules.shared import cmd_opts, opts, state +from swinir_model_arch import SwinIR as net +from swinir_model_arch_v2 import Swin2SR as net2 +from modules.upscaler import Upscaler, UpscalerData + + +device_swinir = devices.get_device_for('swinir') + + +class UpscalerSwinIR(Upscaler): + def __init__(self, dirname): + self.name = "SwinIR" + self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \ + "/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \ + "-L_x4_GAN.pth " + self.model_name = "SwinIR 4x" + self.user_path = dirname + super().__init__() + scalers = [] + model_files = self.find_models(ext_filter=[".pt", ".pth"]) + for model in model_files: + if "http" in model: + name = self.model_name + else: + name = modelloader.friendly_name(model) + model_data = UpscalerData(name, model, self) + scalers.append(model_data) + self.scalers = scalers + + def do_upscale(self, img, model_file): + model = self.load_model(model_file) + if model is None: + return img + model = model.to(device_swinir, dtype=devices.dtype) + img = upscale(img, model) + try: + torch.cuda.empty_cache() + except: + pass + return img + + def load_model(self, path, scale=4): + if "http" in path: + dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth") + filename = load_file_from_url(url=path, model_dir=self.model_path, file_name=dl_name, progress=True) + else: + filename = path + if filename is None or not os.path.exists(filename): + return None + if filename.endswith(".v2.pth"): + model = net2( + upscale=scale, + in_chans=3, + img_size=64, + window_size=8, + img_range=1.0, + depths=[6, 6, 6, 6, 6, 6], + embed_dim=180, + num_heads=[6, 6, 6, 6, 6, 6], + mlp_ratio=2, + upsampler="nearest+conv", + resi_connection="1conv", + ) + params = None + else: + model = net( + upscale=scale, + in_chans=3, + img_size=64, + window_size=8, + img_range=1.0, + depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], + embed_dim=240, + num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], + mlp_ratio=2, + upsampler="nearest+conv", + resi_connection="3conv", + ) + params = "params_ema" + + pretrained_model = torch.load(filename) + if params is not None: + model.load_state_dict(pretrained_model[params], strict=True) + else: + model.load_state_dict(pretrained_model, strict=True) + return model + + +def upscale( + img, + model, + tile=None, + tile_overlap=None, + window_size=8, + scale=4, +): + tile = tile or opts.SWIN_tile + tile_overlap = tile_overlap or opts.SWIN_tile_overlap + + + img = np.array(img) + img = img[:, :, ::-1] + img = np.moveaxis(img, 2, 0) / 255 + img = torch.from_numpy(img).float() + img = img.unsqueeze(0).to(device_swinir, dtype=devices.dtype) + with torch.no_grad(), devices.autocast(): + _, _, h_old, w_old = img.size() + h_pad = (h_old // window_size + 1) * window_size - h_old + w_pad = (w_old // window_size + 1) * window_size - w_old + img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :] + img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad] + output = inference(img, model, tile, tile_overlap, window_size, scale) + output = output[..., : h_old * scale, : w_old * scale] + output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() + if output.ndim == 3: + output = np.transpose( + output[[2, 1, 0], :, :], (1, 2, 0) + ) # CHW-RGB to HCW-BGR + output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 + return Image.fromarray(output, "RGB") + + +def inference(img, model, tile, tile_overlap, window_size, scale): + # test the image tile by tile + b, c, h, w = img.size() + tile = min(tile, h, w) + assert tile % window_size == 0, "tile size should be a multiple of window_size" + sf = scale + + stride = tile - tile_overlap + h_idx_list = list(range(0, h - tile, stride)) + [h - tile] + w_idx_list = list(range(0, w - tile, stride)) + [w - tile] + E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device_swinir).type_as(img) + W = torch.zeros_like(E, dtype=devices.dtype, device=device_swinir) + + with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar: + for h_idx in h_idx_list: + if state.interrupted or state.skipped: + break + + for w_idx in w_idx_list: + if state.interrupted or state.skipped: + break + + in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] + out_patch = model(in_patch) + out_patch_mask = torch.ones_like(out_patch) + + E[ + ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf + ].add_(out_patch) + W[ + ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf + ].add_(out_patch_mask) + pbar.update(1) + output = E.div_(W) + + return output + + +def on_ui_settings(): + import gradio as gr + + shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling"))) + shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling"))) + + +script_callbacks.on_ui_settings(on_ui_settings) diff --git a/extensions-builtin/SwinIR/swinir_model_arch.py b/extensions-builtin/SwinIR/swinir_model_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..863f42db6f50e5eac70931b8c0e6443f831a6018 --- /dev/null +++ b/extensions-builtin/SwinIR/swinir_model_arch.py @@ -0,0 +1,867 @@ +# ----------------------------------------------------------------------------------- +# SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257 +# Originally Written by Ze Liu, Modified by Jingyun Liang. +# ----------------------------------------------------------------------------------- + +import math +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint +from timm.models.layers import DropPath, to_2tuple, trunc_normal_ + + +class Mlp(nn.Module): + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +def window_partition(x, window_size): + """ + Args: + x: (B, H, W, C) + window_size (int): window size + + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + return windows + + +def window_reverse(windows, window_size, H, W): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + window_size (int): Window size + H (int): Height of image + W (int): Width of image + + Returns: + x: (B, H, W, C) + """ + B = int(windows.shape[0] / (H * W / window_size / window_size)) + x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + + +class WindowAttention(nn.Module): + r""" Window based multi-head self attention (W-MSA) module with relative position bias. + It supports both of shifted and non-shifted window. + + Args: + dim (int): Number of input channels. + window_size (tuple[int]): The height and width of the window. + num_heads (int): Number of attention heads. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set + attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 + proj_drop (float, optional): Dropout ratio of output. Default: 0.0 + """ + + def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): + + super().__init__() + self.dim = dim + self.window_size = window_size # Wh, Ww + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = qk_scale or head_dim ** -0.5 + + # define a parameter table of relative position bias + self.relative_position_bias_table = nn.Parameter( + torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + self.register_buffer("relative_position_index", relative_position_index) + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + + self.proj_drop = nn.Dropout(proj_drop) + + trunc_normal_(self.relative_position_bias_table, std=.02) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, x, mask=None): + """ + Args: + x: input features with shape of (num_windows*B, N, C) + mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None + """ + B_, N, C = x.shape + qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) + + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + else: + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B_, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + def extra_repr(self) -> str: + return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' + + def flops(self, N): + # calculate flops for 1 window with token length of N + flops = 0 + # qkv = self.qkv(x) + flops += N * self.dim * 3 * self.dim + # attn = (q @ k.transpose(-2, -1)) + flops += self.num_heads * N * (self.dim // self.num_heads) * N + # x = (attn @ v) + flops += self.num_heads * N * N * (self.dim // self.num_heads) + # x = self.proj(x) + flops += N * self.dim * self.dim + return flops + + +class SwinTransformerBlock(nn.Module): + r""" Swin Transformer Block. + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + num_heads (int): Number of attention heads. + window_size (int): Window size. + shift_size (int): Shift size for SW-MSA. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float, optional): Stochastic depth rate. Default: 0.0 + act_layer (nn.Module, optional): Activation layer. Default: nn.GELU + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, + mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., + act_layer=nn.GELU, norm_layer=nn.LayerNorm): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.num_heads = num_heads + self.window_size = window_size + self.shift_size = shift_size + self.mlp_ratio = mlp_ratio + if min(self.input_resolution) <= self.window_size: + # if window size is larger than input resolution, we don't partition windows + self.shift_size = 0 + self.window_size = min(self.input_resolution) + assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" + + self.norm1 = norm_layer(dim) + self.attn = WindowAttention( + dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, + qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) + + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + + if self.shift_size > 0: + attn_mask = self.calculate_mask(self.input_resolution) + else: + attn_mask = None + + self.register_buffer("attn_mask", attn_mask) + + def calculate_mask(self, x_size): + # calculate attention mask for SW-MSA + H, W = x_size + img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 + h_slices = (slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None)) + w_slices = (slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None)) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 + mask_windows = mask_windows.view(-1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + + return attn_mask + + def forward(self, x, x_size): + H, W = x_size + B, L, C = x.shape + # assert L == H * W, "input feature has wrong size" + + shortcut = x + x = self.norm1(x) + x = x.view(B, H, W, C) + + # cyclic shift + if self.shift_size > 0: + shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) + else: + shifted_x = x + + # partition windows + x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C + x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C + + # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size + if self.input_resolution == x_size: + attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C + else: + attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device)) + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) + shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C + + # reverse cyclic shift + if self.shift_size > 0: + x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) + else: + x = shifted_x + x = x.view(B, H * W, C) + + # FFN + x = shortcut + self.drop_path(x) + x = x + self.drop_path(self.mlp(self.norm2(x))) + + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ + f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" + + def flops(self): + flops = 0 + H, W = self.input_resolution + # norm1 + flops += self.dim * H * W + # W-MSA/SW-MSA + nW = H * W / self.window_size / self.window_size + flops += nW * self.attn.flops(self.window_size * self.window_size) + # mlp + flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio + # norm2 + flops += self.dim * H * W + return flops + + +class PatchMerging(nn.Module): + r""" Patch Merging Layer. + + Args: + input_resolution (tuple[int]): Resolution of input feature. + dim (int): Number of input channels. + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): + super().__init__() + self.input_resolution = input_resolution + self.dim = dim + self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) + self.norm = norm_layer(4 * dim) + + def forward(self, x): + """ + x: B, H*W, C + """ + H, W = self.input_resolution + B, L, C = x.shape + assert L == H * W, "input feature has wrong size" + assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." + + x = x.view(B, H, W, C) + + x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C + x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C + x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C + x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C + x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C + x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C + + x = self.norm(x) + x = self.reduction(x) + + return x + + def extra_repr(self) -> str: + return f"input_resolution={self.input_resolution}, dim={self.dim}" + + def flops(self): + H, W = self.input_resolution + flops = H * W * self.dim + flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim + return flops + + +class BasicLayer(nn.Module): + """ A basic Swin Transformer layer for one stage. + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + """ + + def __init__(self, dim, input_resolution, depth, num_heads, window_size, + mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., + drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): + + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.depth = depth + self.use_checkpoint = use_checkpoint + + # build blocks + self.blocks = nn.ModuleList([ + SwinTransformerBlock(dim=dim, input_resolution=input_resolution, + num_heads=num_heads, window_size=window_size, + shift_size=0 if (i % 2 == 0) else window_size // 2, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop, attn_drop=attn_drop, + drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, + norm_layer=norm_layer) + for i in range(depth)]) + + # patch merging layer + if downsample is not None: + self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) + else: + self.downsample = None + + def forward(self, x, x_size): + for blk in self.blocks: + if self.use_checkpoint: + x = checkpoint.checkpoint(blk, x, x_size) + else: + x = blk(x, x_size) + if self.downsample is not None: + x = self.downsample(x) + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" + + def flops(self): + flops = 0 + for blk in self.blocks: + flops += blk.flops() + if self.downsample is not None: + flops += self.downsample.flops() + return flops + + +class RSTB(nn.Module): + """Residual Swin Transformer Block (RSTB). + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + img_size: Input image size. + patch_size: Patch size. + resi_connection: The convolutional block before residual connection. + """ + + def __init__(self, dim, input_resolution, depth, num_heads, window_size, + mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., + drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, + img_size=224, patch_size=4, resi_connection='1conv'): + super(RSTB, self).__init__() + + self.dim = dim + self.input_resolution = input_resolution + + self.residual_group = BasicLayer(dim=dim, + input_resolution=input_resolution, + depth=depth, + num_heads=num_heads, + window_size=window_size, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop, attn_drop=attn_drop, + drop_path=drop_path, + norm_layer=norm_layer, + downsample=downsample, + use_checkpoint=use_checkpoint) + + if resi_connection == '1conv': + self.conv = nn.Conv2d(dim, dim, 3, 1, 1) + elif resi_connection == '3conv': + # to save parameters and memory + self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim, 3, 1, 1)) + + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, + norm_layer=None) + + self.patch_unembed = PatchUnEmbed( + img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, + norm_layer=None) + + def forward(self, x, x_size): + return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x + + def flops(self): + flops = 0 + flops += self.residual_group.flops() + H, W = self.input_resolution + flops += H * W * self.dim * self.dim * 9 + flops += self.patch_embed.flops() + flops += self.patch_unembed.flops() + + return flops + + +class PatchEmbed(nn.Module): + r""" Image to Patch Embedding + + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + if norm_layer is not None: + self.norm = norm_layer(embed_dim) + else: + self.norm = None + + def forward(self, x): + x = x.flatten(2).transpose(1, 2) # B Ph*Pw C + if self.norm is not None: + x = self.norm(x) + return x + + def flops(self): + flops = 0 + H, W = self.img_size + if self.norm is not None: + flops += H * W * self.embed_dim + return flops + + +class PatchUnEmbed(nn.Module): + r""" Image to Patch Unembedding + + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + def forward(self, x, x_size): + B, HW, C = x.shape + x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C + return x + + def flops(self): + flops = 0 + return flops + + +class Upsample(nn.Sequential): + """Upsample module. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + """ + + def __init__(self, scale, num_feat): + m = [] + if (scale & (scale - 1)) == 0: # scale = 2^n + for _ in range(int(math.log(scale, 2))): + m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(2)) + elif scale == 3: + m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(3)) + else: + raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') + super(Upsample, self).__init__(*m) + + +class UpsampleOneStep(nn.Sequential): + """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) + Used in lightweight SR to save parameters. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + + """ + + def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): + self.num_feat = num_feat + self.input_resolution = input_resolution + m = [] + m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1)) + m.append(nn.PixelShuffle(scale)) + super(UpsampleOneStep, self).__init__(*m) + + def flops(self): + H, W = self.input_resolution + flops = H * W * self.num_feat * 3 * 9 + return flops + + +class SwinIR(nn.Module): + r""" SwinIR + A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer. + + Args: + img_size (int | tuple(int)): Input image size. Default 64 + patch_size (int | tuple(int)): Patch size. Default: 1 + in_chans (int): Number of input image channels. Default: 3 + embed_dim (int): Patch embedding dimension. Default: 96 + depths (tuple(int)): Depth of each Swin Transformer layer. + num_heads (tuple(int)): Number of attention heads in different layers. + window_size (int): Window size. Default: 7 + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None + drop_rate (float): Dropout rate. Default: 0 + attn_drop_rate (float): Attention dropout rate. Default: 0 + drop_path_rate (float): Stochastic depth rate. Default: 0.1 + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. + ape (bool): If True, add absolute position embedding to the patch embedding. Default: False + patch_norm (bool): If True, add normalization after patch embedding. Default: True + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False + upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction + img_range: Image range. 1. or 255. + upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None + resi_connection: The convolutional block before residual connection. '1conv'/'3conv' + """ + + def __init__(self, img_size=64, patch_size=1, in_chans=3, + embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], + window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, + drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, + norm_layer=nn.LayerNorm, ape=False, patch_norm=True, + use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', + **kwargs): + super(SwinIR, self).__init__() + num_in_ch = in_chans + num_out_ch = in_chans + num_feat = 64 + self.img_range = img_range + if in_chans == 3: + rgb_mean = (0.4488, 0.4371, 0.4040) + self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) + else: + self.mean = torch.zeros(1, 1, 1, 1) + self.upscale = upscale + self.upsampler = upsampler + self.window_size = window_size + + ##################################################################################################### + ################################### 1, shallow feature extraction ################################### + self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) + + ##################################################################################################### + ################################### 2, deep feature extraction ###################################### + self.num_layers = len(depths) + self.embed_dim = embed_dim + self.ape = ape + self.patch_norm = patch_norm + self.num_features = embed_dim + self.mlp_ratio = mlp_ratio + + # split image into non-overlapping patches + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None) + num_patches = self.patch_embed.num_patches + patches_resolution = self.patch_embed.patches_resolution + self.patches_resolution = patches_resolution + + # merge non-overlapping patches into image + self.patch_unembed = PatchUnEmbed( + img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None) + + # absolute position embedding + if self.ape: + self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) + trunc_normal_(self.absolute_pos_embed, std=.02) + + self.pos_drop = nn.Dropout(p=drop_rate) + + # stochastic depth + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule + + # build Residual Swin Transformer blocks (RSTB) + self.layers = nn.ModuleList() + for i_layer in range(self.num_layers): + layer = RSTB(dim=embed_dim, + input_resolution=(patches_resolution[0], + patches_resolution[1]), + depth=depths[i_layer], + num_heads=num_heads[i_layer], + window_size=window_size, + mlp_ratio=self.mlp_ratio, + qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop_rate, attn_drop=attn_drop_rate, + drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results + norm_layer=norm_layer, + downsample=None, + use_checkpoint=use_checkpoint, + img_size=img_size, + patch_size=patch_size, + resi_connection=resi_connection + + ) + self.layers.append(layer) + self.norm = norm_layer(self.num_features) + + # build the last conv layer in deep feature extraction + if resi_connection == '1conv': + self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) + elif resi_connection == '3conv': + # to save parameters and memory + self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1)) + + ##################################################################################################### + ################################ 3, high quality image reconstruction ################################ + if self.upsampler == 'pixelshuffle': + # for classical SR + self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.upsample = Upsample(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + elif self.upsampler == 'pixelshuffledirect': + # for lightweight SR (to save parameters) + self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch, + (patches_resolution[0], patches_resolution[1])) + elif self.upsampler == 'nearest+conv': + # for real-world SR (less artifacts) + self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + if self.upscale == 4: + self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) + else: + # for image denoising and JPEG compression artifact reduction + self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) + + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'absolute_pos_embed'} + + @torch.jit.ignore + def no_weight_decay_keywords(self): + return {'relative_position_bias_table'} + + def check_image_size(self, x): + _, _, h, w = x.size() + mod_pad_h = (self.window_size - h % self.window_size) % self.window_size + mod_pad_w = (self.window_size - w % self.window_size) % self.window_size + x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect') + return x + + def forward_features(self, x): + x_size = (x.shape[2], x.shape[3]) + x = self.patch_embed(x) + if self.ape: + x = x + self.absolute_pos_embed + x = self.pos_drop(x) + + for layer in self.layers: + x = layer(x, x_size) + + x = self.norm(x) # B L C + x = self.patch_unembed(x, x_size) + + return x + + def forward(self, x): + H, W = x.shape[2:] + x = self.check_image_size(x) + + self.mean = self.mean.type_as(x) + x = (x - self.mean) * self.img_range + + if self.upsampler == 'pixelshuffle': + # for classical SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.conv_last(self.upsample(x)) + elif self.upsampler == 'pixelshuffledirect': + # for lightweight SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.upsample(x) + elif self.upsampler == 'nearest+conv': + # for real-world SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) + if self.upscale == 4: + x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) + x = self.conv_last(self.lrelu(self.conv_hr(x))) + else: + # for image denoising and JPEG compression artifact reduction + x_first = self.conv_first(x) + res = self.conv_after_body(self.forward_features(x_first)) + x_first + x = x + self.conv_last(res) + + x = x / self.img_range + self.mean + + return x[:, :, :H*self.upscale, :W*self.upscale] + + def flops(self): + flops = 0 + H, W = self.patches_resolution + flops += H * W * 3 * self.embed_dim * 9 + flops += self.patch_embed.flops() + for i, layer in enumerate(self.layers): + flops += layer.flops() + flops += H * W * 3 * self.embed_dim * self.embed_dim + flops += self.upsample.flops() + return flops + + +if __name__ == '__main__': + upscale = 4 + window_size = 8 + height = (1024 // upscale // window_size + 1) * window_size + width = (720 // upscale // window_size + 1) * window_size + model = SwinIR(upscale=2, img_size=(height, width), + window_size=window_size, img_range=1., depths=[6, 6, 6, 6], + embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect') + print(model) + print(height, width, model.flops() / 1e9) + + x = torch.randn((1, 3, height, width)) + x = model(x) + print(x.shape) diff --git a/extensions-builtin/SwinIR/swinir_model_arch_v2.py b/extensions-builtin/SwinIR/swinir_model_arch_v2.py new file mode 100644 index 0000000000000000000000000000000000000000..a1255881a13b480d1b7564d7474e8bbb5fd7ee76 --- /dev/null +++ b/extensions-builtin/SwinIR/swinir_model_arch_v2.py @@ -0,0 +1,1017 @@ +# ----------------------------------------------------------------------------------- +# Swin2SR: Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration, https://arxiv.org/abs/ +# Written by Conde and Choi et al. +# ----------------------------------------------------------------------------------- + +import math +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint as checkpoint +from timm.models.layers import DropPath, to_2tuple, trunc_normal_ + + +class Mlp(nn.Module): + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +def window_partition(x, window_size): + """ + Args: + x: (B, H, W, C) + window_size (int): window size + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + return windows + + +def window_reverse(windows, window_size, H, W): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + window_size (int): Window size + H (int): Height of image + W (int): Width of image + Returns: + x: (B, H, W, C) + """ + B = int(windows.shape[0] / (H * W / window_size / window_size)) + x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + +class WindowAttention(nn.Module): + r""" Window based multi-head self attention (W-MSA) module with relative position bias. + It supports both of shifted and non-shifted window. + Args: + dim (int): Number of input channels. + window_size (tuple[int]): The height and width of the window. + num_heads (int): Number of attention heads. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 + proj_drop (float, optional): Dropout ratio of output. Default: 0.0 + pretrained_window_size (tuple[int]): The height and width of the window in pre-training. + """ + + def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0., + pretrained_window_size=[0, 0]): + + super().__init__() + self.dim = dim + self.window_size = window_size # Wh, Ww + self.pretrained_window_size = pretrained_window_size + self.num_heads = num_heads + + self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) + + # mlp to generate continuous relative position bias + self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True), + nn.ReLU(inplace=True), + nn.Linear(512, num_heads, bias=False)) + + # get relative_coords_table + relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32) + relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32) + relative_coords_table = torch.stack( + torch.meshgrid([relative_coords_h, + relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2 + if pretrained_window_size[0] > 0: + relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1) + relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1) + else: + relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) + relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) + relative_coords_table *= 8 # normalize to -8, 8 + relative_coords_table = torch.sign(relative_coords_table) * torch.log2( + torch.abs(relative_coords_table) + 1.0) / np.log2(8) + + self.register_buffer("relative_coords_table", relative_coords_table) + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + self.register_buffer("relative_position_index", relative_position_index) + + self.qkv = nn.Linear(dim, dim * 3, bias=False) + if qkv_bias: + self.q_bias = nn.Parameter(torch.zeros(dim)) + self.v_bias = nn.Parameter(torch.zeros(dim)) + else: + self.q_bias = None + self.v_bias = None + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, x, mask=None): + """ + Args: + x: input features with shape of (num_windows*B, N, C) + mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None + """ + B_, N, C = x.shape + qkv_bias = None + if self.q_bias is not None: + qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) + qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) + qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) + + # cosine attention + attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) + logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).to(self.logit_scale.device)).exp() + attn = attn * logit_scale + + relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) + relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + relative_position_bias = 16 * torch.sigmoid(relative_position_bias) + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + else: + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B_, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + def extra_repr(self) -> str: + return f'dim={self.dim}, window_size={self.window_size}, ' \ + f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}' + + def flops(self, N): + # calculate flops for 1 window with token length of N + flops = 0 + # qkv = self.qkv(x) + flops += N * self.dim * 3 * self.dim + # attn = (q @ k.transpose(-2, -1)) + flops += self.num_heads * N * (self.dim // self.num_heads) * N + # x = (attn @ v) + flops += self.num_heads * N * N * (self.dim // self.num_heads) + # x = self.proj(x) + flops += N * self.dim * self.dim + return flops + +class SwinTransformerBlock(nn.Module): + r""" Swin Transformer Block. + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resulotion. + num_heads (int): Number of attention heads. + window_size (int): Window size. + shift_size (int): Shift size for SW-MSA. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float, optional): Stochastic depth rate. Default: 0.0 + act_layer (nn.Module, optional): Activation layer. Default: nn.GELU + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + pretrained_window_size (int): Window size in pre-training. + """ + + def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, + mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., + act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.num_heads = num_heads + self.window_size = window_size + self.shift_size = shift_size + self.mlp_ratio = mlp_ratio + if min(self.input_resolution) <= self.window_size: + # if window size is larger than input resolution, we don't partition windows + self.shift_size = 0 + self.window_size = min(self.input_resolution) + assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" + + self.norm1 = norm_layer(dim) + self.attn = WindowAttention( + dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, + qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, + pretrained_window_size=to_2tuple(pretrained_window_size)) + + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + + if self.shift_size > 0: + attn_mask = self.calculate_mask(self.input_resolution) + else: + attn_mask = None + + self.register_buffer("attn_mask", attn_mask) + + def calculate_mask(self, x_size): + # calculate attention mask for SW-MSA + H, W = x_size + img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 + h_slices = (slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None)) + w_slices = (slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None)) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 + mask_windows = mask_windows.view(-1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + + return attn_mask + + def forward(self, x, x_size): + H, W = x_size + B, L, C = x.shape + #assert L == H * W, "input feature has wrong size" + + shortcut = x + x = x.view(B, H, W, C) + + # cyclic shift + if self.shift_size > 0: + shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) + else: + shifted_x = x + + # partition windows + x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C + x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C + + # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size + if self.input_resolution == x_size: + attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C + else: + attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device)) + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) + shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C + + # reverse cyclic shift + if self.shift_size > 0: + x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) + else: + x = shifted_x + x = x.view(B, H * W, C) + x = shortcut + self.drop_path(self.norm1(x)) + + # FFN + x = x + self.drop_path(self.norm2(self.mlp(x))) + + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ + f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" + + def flops(self): + flops = 0 + H, W = self.input_resolution + # norm1 + flops += self.dim * H * W + # W-MSA/SW-MSA + nW = H * W / self.window_size / self.window_size + flops += nW * self.attn.flops(self.window_size * self.window_size) + # mlp + flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio + # norm2 + flops += self.dim * H * W + return flops + +class PatchMerging(nn.Module): + r""" Patch Merging Layer. + Args: + input_resolution (tuple[int]): Resolution of input feature. + dim (int): Number of input channels. + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): + super().__init__() + self.input_resolution = input_resolution + self.dim = dim + self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) + self.norm = norm_layer(2 * dim) + + def forward(self, x): + """ + x: B, H*W, C + """ + H, W = self.input_resolution + B, L, C = x.shape + assert L == H * W, "input feature has wrong size" + assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." + + x = x.view(B, H, W, C) + + x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C + x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C + x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C + x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C + x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C + x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C + + x = self.reduction(x) + x = self.norm(x) + + return x + + def extra_repr(self) -> str: + return f"input_resolution={self.input_resolution}, dim={self.dim}" + + def flops(self): + H, W = self.input_resolution + flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim + flops += H * W * self.dim // 2 + return flops + +class BasicLayer(nn.Module): + """ A basic Swin Transformer layer for one stage. + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + pretrained_window_size (int): Local window size in pre-training. + """ + + def __init__(self, dim, input_resolution, depth, num_heads, window_size, + mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., + drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, + pretrained_window_size=0): + + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.depth = depth + self.use_checkpoint = use_checkpoint + + # build blocks + self.blocks = nn.ModuleList([ + SwinTransformerBlock(dim=dim, input_resolution=input_resolution, + num_heads=num_heads, window_size=window_size, + shift_size=0 if (i % 2 == 0) else window_size // 2, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + drop=drop, attn_drop=attn_drop, + drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, + norm_layer=norm_layer, + pretrained_window_size=pretrained_window_size) + for i in range(depth)]) + + # patch merging layer + if downsample is not None: + self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) + else: + self.downsample = None + + def forward(self, x, x_size): + for blk in self.blocks: + if self.use_checkpoint: + x = checkpoint.checkpoint(blk, x, x_size) + else: + x = blk(x, x_size) + if self.downsample is not None: + x = self.downsample(x) + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" + + def flops(self): + flops = 0 + for blk in self.blocks: + flops += blk.flops() + if self.downsample is not None: + flops += self.downsample.flops() + return flops + + def _init_respostnorm(self): + for blk in self.blocks: + nn.init.constant_(blk.norm1.bias, 0) + nn.init.constant_(blk.norm1.weight, 0) + nn.init.constant_(blk.norm2.bias, 0) + nn.init.constant_(blk.norm2.weight, 0) + +class PatchEmbed(nn.Module): + r""" Image to Patch Embedding + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + if norm_layer is not None: + self.norm = norm_layer(embed_dim) + else: + self.norm = None + + def forward(self, x): + B, C, H, W = x.shape + # FIXME look at relaxing size constraints + # assert H == self.img_size[0] and W == self.img_size[1], + # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C + if self.norm is not None: + x = self.norm(x) + return x + + def flops(self): + Ho, Wo = self.patches_resolution + flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) + if self.norm is not None: + flops += Ho * Wo * self.embed_dim + return flops + +class RSTB(nn.Module): + """Residual Swin Transformer Block (RSTB). + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + img_size: Input image size. + patch_size: Patch size. + resi_connection: The convolutional block before residual connection. + """ + + def __init__(self, dim, input_resolution, depth, num_heads, window_size, + mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., + drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, + img_size=224, patch_size=4, resi_connection='1conv'): + super(RSTB, self).__init__() + + self.dim = dim + self.input_resolution = input_resolution + + self.residual_group = BasicLayer(dim=dim, + input_resolution=input_resolution, + depth=depth, + num_heads=num_heads, + window_size=window_size, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + drop=drop, attn_drop=attn_drop, + drop_path=drop_path, + norm_layer=norm_layer, + downsample=downsample, + use_checkpoint=use_checkpoint) + + if resi_connection == '1conv': + self.conv = nn.Conv2d(dim, dim, 3, 1, 1) + elif resi_connection == '3conv': + # to save parameters and memory + self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim, 3, 1, 1)) + + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim, + norm_layer=None) + + self.patch_unembed = PatchUnEmbed( + img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim, + norm_layer=None) + + def forward(self, x, x_size): + return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x + + def flops(self): + flops = 0 + flops += self.residual_group.flops() + H, W = self.input_resolution + flops += H * W * self.dim * self.dim * 9 + flops += self.patch_embed.flops() + flops += self.patch_unembed.flops() + + return flops + +class PatchUnEmbed(nn.Module): + r""" Image to Patch Unembedding + + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + def forward(self, x, x_size): + B, HW, C = x.shape + x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C + return x + + def flops(self): + flops = 0 + return flops + + +class Upsample(nn.Sequential): + """Upsample module. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + """ + + def __init__(self, scale, num_feat): + m = [] + if (scale & (scale - 1)) == 0: # scale = 2^n + for _ in range(int(math.log(scale, 2))): + m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(2)) + elif scale == 3: + m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(3)) + else: + raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') + super(Upsample, self).__init__(*m) + +class Upsample_hf(nn.Sequential): + """Upsample module. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + """ + + def __init__(self, scale, num_feat): + m = [] + if (scale & (scale - 1)) == 0: # scale = 2^n + for _ in range(int(math.log(scale, 2))): + m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(2)) + elif scale == 3: + m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(3)) + else: + raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') + super(Upsample_hf, self).__init__(*m) + + +class UpsampleOneStep(nn.Sequential): + """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) + Used in lightweight SR to save parameters. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + + """ + + def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): + self.num_feat = num_feat + self.input_resolution = input_resolution + m = [] + m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1)) + m.append(nn.PixelShuffle(scale)) + super(UpsampleOneStep, self).__init__(*m) + + def flops(self): + H, W = self.input_resolution + flops = H * W * self.num_feat * 3 * 9 + return flops + + + +class Swin2SR(nn.Module): + r""" Swin2SR + A PyTorch impl of : `Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration`. + + Args: + img_size (int | tuple(int)): Input image size. Default 64 + patch_size (int | tuple(int)): Patch size. Default: 1 + in_chans (int): Number of input image channels. Default: 3 + embed_dim (int): Patch embedding dimension. Default: 96 + depths (tuple(int)): Depth of each Swin Transformer layer. + num_heads (tuple(int)): Number of attention heads in different layers. + window_size (int): Window size. Default: 7 + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + drop_rate (float): Dropout rate. Default: 0 + attn_drop_rate (float): Attention dropout rate. Default: 0 + drop_path_rate (float): Stochastic depth rate. Default: 0.1 + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. + ape (bool): If True, add absolute position embedding to the patch embedding. Default: False + patch_norm (bool): If True, add normalization after patch embedding. Default: True + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False + upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction + img_range: Image range. 1. or 255. + upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None + resi_connection: The convolutional block before residual connection. '1conv'/'3conv' + """ + + def __init__(self, img_size=64, patch_size=1, in_chans=3, + embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], + window_size=7, mlp_ratio=4., qkv_bias=True, + drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, + norm_layer=nn.LayerNorm, ape=False, patch_norm=True, + use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', + **kwargs): + super(Swin2SR, self).__init__() + num_in_ch = in_chans + num_out_ch = in_chans + num_feat = 64 + self.img_range = img_range + if in_chans == 3: + rgb_mean = (0.4488, 0.4371, 0.4040) + self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) + else: + self.mean = torch.zeros(1, 1, 1, 1) + self.upscale = upscale + self.upsampler = upsampler + self.window_size = window_size + + ##################################################################################################### + ################################### 1, shallow feature extraction ################################### + self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) + + ##################################################################################################### + ################################### 2, deep feature extraction ###################################### + self.num_layers = len(depths) + self.embed_dim = embed_dim + self.ape = ape + self.patch_norm = patch_norm + self.num_features = embed_dim + self.mlp_ratio = mlp_ratio + + # split image into non-overlapping patches + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None) + num_patches = self.patch_embed.num_patches + patches_resolution = self.patch_embed.patches_resolution + self.patches_resolution = patches_resolution + + # merge non-overlapping patches into image + self.patch_unembed = PatchUnEmbed( + img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None) + + # absolute position embedding + if self.ape: + self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) + trunc_normal_(self.absolute_pos_embed, std=.02) + + self.pos_drop = nn.Dropout(p=drop_rate) + + # stochastic depth + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule + + # build Residual Swin Transformer blocks (RSTB) + self.layers = nn.ModuleList() + for i_layer in range(self.num_layers): + layer = RSTB(dim=embed_dim, + input_resolution=(patches_resolution[0], + patches_resolution[1]), + depth=depths[i_layer], + num_heads=num_heads[i_layer], + window_size=window_size, + mlp_ratio=self.mlp_ratio, + qkv_bias=qkv_bias, + drop=drop_rate, attn_drop=attn_drop_rate, + drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results + norm_layer=norm_layer, + downsample=None, + use_checkpoint=use_checkpoint, + img_size=img_size, + patch_size=patch_size, + resi_connection=resi_connection + + ) + self.layers.append(layer) + + if self.upsampler == 'pixelshuffle_hf': + self.layers_hf = nn.ModuleList() + for i_layer in range(self.num_layers): + layer = RSTB(dim=embed_dim, + input_resolution=(patches_resolution[0], + patches_resolution[1]), + depth=depths[i_layer], + num_heads=num_heads[i_layer], + window_size=window_size, + mlp_ratio=self.mlp_ratio, + qkv_bias=qkv_bias, + drop=drop_rate, attn_drop=attn_drop_rate, + drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results + norm_layer=norm_layer, + downsample=None, + use_checkpoint=use_checkpoint, + img_size=img_size, + patch_size=patch_size, + resi_connection=resi_connection + + ) + self.layers_hf.append(layer) + + self.norm = norm_layer(self.num_features) + + # build the last conv layer in deep feature extraction + if resi_connection == '1conv': + self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) + elif resi_connection == '3conv': + # to save parameters and memory + self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1)) + + ##################################################################################################### + ################################ 3, high quality image reconstruction ################################ + if self.upsampler == 'pixelshuffle': + # for classical SR + self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.upsample = Upsample(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + elif self.upsampler == 'pixelshuffle_aux': + self.conv_bicubic = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) + self.conv_before_upsample = nn.Sequential( + nn.Conv2d(embed_dim, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + self.conv_after_aux = nn.Sequential( + nn.Conv2d(3, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.upsample = Upsample(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + + elif self.upsampler == 'pixelshuffle_hf': + self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.upsample = Upsample(upscale, num_feat) + self.upsample_hf = Upsample_hf(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + self.conv_first_hf = nn.Sequential(nn.Conv2d(num_feat, embed_dim, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.conv_after_body_hf = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) + self.conv_before_upsample_hf = nn.Sequential( + nn.Conv2d(embed_dim, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + + elif self.upsampler == 'pixelshuffledirect': + # for lightweight SR (to save parameters) + self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch, + (patches_resolution[0], patches_resolution[1])) + elif self.upsampler == 'nearest+conv': + # for real-world SR (less artifacts) + assert self.upscale == 4, 'only support x4 now.' + self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) + else: + # for image denoising and JPEG compression artifact reduction + self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) + + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'absolute_pos_embed'} + + @torch.jit.ignore + def no_weight_decay_keywords(self): + return {'relative_position_bias_table'} + + def check_image_size(self, x): + _, _, h, w = x.size() + mod_pad_h = (self.window_size - h % self.window_size) % self.window_size + mod_pad_w = (self.window_size - w % self.window_size) % self.window_size + x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect') + return x + + def forward_features(self, x): + x_size = (x.shape[2], x.shape[3]) + x = self.patch_embed(x) + if self.ape: + x = x + self.absolute_pos_embed + x = self.pos_drop(x) + + for layer in self.layers: + x = layer(x, x_size) + + x = self.norm(x) # B L C + x = self.patch_unembed(x, x_size) + + return x + + def forward_features_hf(self, x): + x_size = (x.shape[2], x.shape[3]) + x = self.patch_embed(x) + if self.ape: + x = x + self.absolute_pos_embed + x = self.pos_drop(x) + + for layer in self.layers_hf: + x = layer(x, x_size) + + x = self.norm(x) # B L C + x = self.patch_unembed(x, x_size) + + return x + + def forward(self, x): + H, W = x.shape[2:] + x = self.check_image_size(x) + + self.mean = self.mean.type_as(x) + x = (x - self.mean) * self.img_range + + if self.upsampler == 'pixelshuffle': + # for classical SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.conv_last(self.upsample(x)) + elif self.upsampler == 'pixelshuffle_aux': + bicubic = F.interpolate(x, size=(H * self.upscale, W * self.upscale), mode='bicubic', align_corners=False) + bicubic = self.conv_bicubic(bicubic) + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + aux = self.conv_aux(x) # b, 3, LR_H, LR_W + x = self.conv_after_aux(aux) + x = self.upsample(x)[:, :, :H * self.upscale, :W * self.upscale] + bicubic[:, :, :H * self.upscale, :W * self.upscale] + x = self.conv_last(x) + aux = aux / self.img_range + self.mean + elif self.upsampler == 'pixelshuffle_hf': + # for classical SR with HF + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x_before = self.conv_before_upsample(x) + x_out = self.conv_last(self.upsample(x_before)) + + x_hf = self.conv_first_hf(x_before) + x_hf = self.conv_after_body_hf(self.forward_features_hf(x_hf)) + x_hf + x_hf = self.conv_before_upsample_hf(x_hf) + x_hf = self.conv_last_hf(self.upsample_hf(x_hf)) + x = x_out + x_hf + x_hf = x_hf / self.img_range + self.mean + + elif self.upsampler == 'pixelshuffledirect': + # for lightweight SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.upsample(x) + elif self.upsampler == 'nearest+conv': + # for real-world SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) + x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) + x = self.conv_last(self.lrelu(self.conv_hr(x))) + else: + # for image denoising and JPEG compression artifact reduction + x_first = self.conv_first(x) + res = self.conv_after_body(self.forward_features(x_first)) + x_first + x = x + self.conv_last(res) + + x = x / self.img_range + self.mean + if self.upsampler == "pixelshuffle_aux": + return x[:, :, :H*self.upscale, :W*self.upscale], aux + + elif self.upsampler == "pixelshuffle_hf": + x_out = x_out / self.img_range + self.mean + return x_out[:, :, :H*self.upscale, :W*self.upscale], x[:, :, :H*self.upscale, :W*self.upscale], x_hf[:, :, :H*self.upscale, :W*self.upscale] + + else: + return x[:, :, :H*self.upscale, :W*self.upscale] + + def flops(self): + flops = 0 + H, W = self.patches_resolution + flops += H * W * 3 * self.embed_dim * 9 + flops += self.patch_embed.flops() + for i, layer in enumerate(self.layers): + flops += layer.flops() + flops += H * W * 3 * self.embed_dim * self.embed_dim + flops += self.upsample.flops() + return flops + + +if __name__ == '__main__': + upscale = 4 + window_size = 8 + height = (1024 // upscale // window_size + 1) * window_size + width = (720 // upscale // window_size + 1) * window_size + model = Swin2SR(upscale=2, img_size=(height, width), + window_size=window_size, img_range=1., depths=[6, 6, 6, 6], + embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect') + print(model) + print(height, width, model.flops() / 1e9) + + x = torch.randn((1, 3, height, width)) + x = model(x) + print(x.shape) \ No newline at end of file diff --git a/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js b/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js new file mode 100644 index 0000000000000000000000000000000000000000..4a85c8ebf25110e911a6a1021fae6a014aa11000 --- /dev/null +++ b/extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js @@ -0,0 +1,110 @@ +// Stable Diffusion WebUI - Bracket checker +// Version 1.0 +// By Hingashi no Florin/Bwin4L +// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs. +// If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong. + +function checkBrackets(evt, textArea, counterElt) { + errorStringParen = '(...) - Different number of opening and closing parentheses detected.\n'; + errorStringSquare = '[...] - Different number of opening and closing square brackets detected.\n'; + errorStringCurly = '{...} - Different number of opening and closing curly brackets detected.\n'; + + openBracketRegExp = /\(/g; + closeBracketRegExp = /\)/g; + + openSquareBracketRegExp = /\[/g; + closeSquareBracketRegExp = /\]/g; + + openCurlyBracketRegExp = /\{/g; + closeCurlyBracketRegExp = /\}/g; + + totalOpenBracketMatches = 0; + totalCloseBracketMatches = 0; + totalOpenSquareBracketMatches = 0; + totalCloseSquareBracketMatches = 0; + totalOpenCurlyBracketMatches = 0; + totalCloseCurlyBracketMatches = 0; + + openBracketMatches = textArea.value.match(openBracketRegExp); + if(openBracketMatches) { + totalOpenBracketMatches = openBracketMatches.length; + } + + closeBracketMatches = textArea.value.match(closeBracketRegExp); + if(closeBracketMatches) { + totalCloseBracketMatches = closeBracketMatches.length; + } + + openSquareBracketMatches = textArea.value.match(openSquareBracketRegExp); + if(openSquareBracketMatches) { + totalOpenSquareBracketMatches = openSquareBracketMatches.length; + } + + closeSquareBracketMatches = textArea.value.match(closeSquareBracketRegExp); + if(closeSquareBracketMatches) { + totalCloseSquareBracketMatches = closeSquareBracketMatches.length; + } + + openCurlyBracketMatches = textArea.value.match(openCurlyBracketRegExp); + if(openCurlyBracketMatches) { + totalOpenCurlyBracketMatches = openCurlyBracketMatches.length; + } + + closeCurlyBracketMatches = textArea.value.match(closeCurlyBracketRegExp); + if(closeCurlyBracketMatches) { + totalCloseCurlyBracketMatches = closeCurlyBracketMatches.length; + } + + if(totalOpenBracketMatches != totalCloseBracketMatches) { + if(!counterElt.title.includes(errorStringParen)) { + counterElt.title += errorStringParen; + } + } else { + counterElt.title = counterElt.title.replace(errorStringParen, ''); + } + + if(totalOpenSquareBracketMatches != totalCloseSquareBracketMatches) { + if(!counterElt.title.includes(errorStringSquare)) { + counterElt.title += errorStringSquare; + } + } else { + counterElt.title = counterElt.title.replace(errorStringSquare, ''); + } + + if(totalOpenCurlyBracketMatches != totalCloseCurlyBracketMatches) { + if(!counterElt.title.includes(errorStringCurly)) { + counterElt.title += errorStringCurly; + } + } else { + counterElt.title = counterElt.title.replace(errorStringCurly, ''); + } + + if(counterElt.title != '') { + counterElt.classList.add('error'); + } else { + counterElt.classList.remove('error'); + } +} + +function setupBracketChecking(id_prompt, id_counter){ + var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea"); + var counter = gradioApp().getElementById(id_counter) + textarea.addEventListener("input", function(evt){ + checkBrackets(evt, textarea, counter) + }); +} + +var shadowRootLoaded = setInterval(function() { + var shadowRoot = document.querySelector('gradio-app').shadowRoot; + if(! shadowRoot) return false; + + var shadowTextArea = shadowRoot.querySelectorAll('#txt2img_prompt > label > textarea'); + if(shadowTextArea.length < 1) return false; + + clearInterval(shadowRootLoaded); + + setupBracketChecking('txt2img_prompt', 'txt2img_token_counter') + setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter') + setupBracketChecking('img2img_prompt', 'imgimg_token_counter') + setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter') +}, 1000); diff --git a/handler.py b/handler.py new file mode 100644 index 0000000000000000000000000000000000000000..1b583ab622bcc3f4063c87aa18b8169fe8d42ee9 --- /dev/null +++ b/handler.py @@ -0,0 +1,233 @@ +# inference handler for huggingface +import os +import sys +import time +import importlib +import signal +import re +from typing import Dict, List, Any +# from fastapi import FastAPI +# from fastapi.middleware.cors import CORSMiddleware +# from fastapi.middleware.gzip import GZipMiddleware +from packaging import version + +import logging +logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage()) + +from modules import errors +from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call + +import torch + +# Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors +if ".dev" in torch.__version__ or "+git" in torch.__version__: + torch.__long_version__ = torch.__version__ + torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0) + +from modules import shared, devices, ui_tempdir +import modules.codeformer_model as codeformer +import modules.face_restoration +import modules.gfpgan_model as gfpgan +import modules.img2img + +import modules.lowvram +import modules.paths +import modules.scripts +import modules.sd_hijack +import modules.sd_models +import modules.sd_vae +import modules.txt2img +import modules.script_callbacks +import modules.textual_inversion.textual_inversion +import modules.progress + +import modules.ui +from modules import modelloader +from modules.shared import cmd_opts, opts +import modules.hypernetworks.hypernetwork + +from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images +import base64 +import io +from fastapi import HTTPException +from io import BytesIO +import piexif +import piexif.helper +from PIL import PngImagePlugin,Image + + +def initialize(): + # check_versions() + + # extensions.list_extensions() + # localization.list_localizations(cmd_opts.localizations_dir) + + # if cmd_opts.ui_debug_mode: + # shared.sd_upscalers = upscaler.UpscalerLanczos().scalers + # modules.scripts.load_scripts() + # return + + modelloader.cleanup_models() + modules.sd_models.setup_model() + codeformer.setup_model(cmd_opts.codeformer_models_path) + gfpgan.setup_model(cmd_opts.gfpgan_models_path) + + modelloader.list_builtin_upscalers() + # modules.scripts.load_scripts() + modelloader.load_upscalers() + + modules.sd_vae.refresh_vae_list() + + # modules.textual_inversion.textual_inversion.list_textual_inversion_templates() + + try: + modules.sd_models.load_model() + except Exception as e: + errors.display(e, "loading stable diffusion model") + print("", file=sys.stderr) + print("Stable diffusion model failed to load, exiting", file=sys.stderr) + exit(1) + + shared.opts.data["sd_model_checkpoint"] = shared.sd_model.sd_checkpoint_info.title + + shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights())) + shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) + shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) + shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed) + + # shared.reload_hypernetworks() + + # ui_extra_networks.intialize() + # ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion()) + # ui_extra_networks.register_page(ui_extra_networks_hypernets.ExtraNetworksPageHypernetworks()) + # ui_extra_networks.register_page(ui_extra_networks_checkpoints.ExtraNetworksPageCheckpoints()) + + # extra_networks.initialize() + # extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet()) + + # if cmd_opts.tls_keyfile is not None and cmd_opts.tls_keyfile is not None: + + # try: + # if not os.path.exists(cmd_opts.tls_keyfile): + # print("Invalid path to TLS keyfile given") + # if not os.path.exists(cmd_opts.tls_certfile): + # print(f"Invalid path to TLS certfile: '{cmd_opts.tls_certfile}'") + # except TypeError: + # cmd_opts.tls_keyfile = cmd_opts.tls_certfile = None + # print("TLS setup invalid, running webui without TLS") + # else: + # print("Running with TLS") + + # make the program just exit at ctrl+c without waiting for anything + def sigint_handler(sig, frame): + print(f'Interrupted with signal {sig} in {frame}') + os._exit(0) + + signal.signal(signal.SIGINT, sigint_handler) + + +class EndpointHandler(): + def __init__(self, path=""): + # Preload all the elements you are going to need at inference. + # pseudo: + # self.model= load_model(path) + initialize() + self.shared = shared + + def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: + """ + data args: + inputs (:obj: `str` | `PIL.Image` | `np.array`) + kwargs + Return: + A :obj:`list` | `dict`: will be serialized and returned + """ + args = { + "do_not_save_samples": True, + "do_not_save_grid": True, + "outpath_samples": "./output", + "prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer", + "negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans, (ugly:1.331), (duplicate:1.331), (morbid:1.21), (mutilated:1.21), (tranny:1.331), mutated hands, (poorly drawn hands:1.331), blurry, 3hands,4fingers,3arms, bad anatomy, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts,poorly drawn face,mutation,deformed", + "sampler_name": "DPM++ SDE Karras", + "steps": 20, # 25 + "cfg_scale": 8, + "width": 512, + "height": 768, + "seed": -1, + } + if data["inputs"]: + if "prompt" in data["inputs"].keys(): + prompt = data["inputs"]["prompt"] + print("get prompt from request: ", prompt) + args["prompt"] = prompt + p = StableDiffusionProcessingTxt2Img(sd_model=self.shared.sd_model, **args) + processed = process_images(p) + single_image_b64 = encode_pil_to_base64(processed.images[0]).decode('utf-8') + return { + "img_data": single_image_b64, + "parameters": processed.images[0].info.get('parameters', ""), + } + + +def manual_hack(): + initialize() + args = { + # todo: don't output res + "outpath_samples": "C:\\Users\\wolvz\\Desktop", + "prompt": "lora:koreanDollLikeness_v15:0.66, best quality, ultra high res, (photorealistic:1.4), 1girl, beige sweater, black choker, smile, laughing, bare shoulders, solo focus, ((full body), (brown hair:1), looking at viewer", + "negative_prompt": "paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot, glans", + "sampler_name": "DPM++ SDE Karras", + "steps": 20, # 25 + "cfg_scale": 8, + "width": 512, + "height": 768, + "seed": -1, + } + p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args) + processed = process_images(p) + + +def decode_base64_to_image(encoding): + if encoding.startswith("data:image/"): + encoding = encoding.split(";")[1].split(",")[1] + try: + image = Image.open(BytesIO(base64.b64decode(encoding))) + return image + except Exception as err: + raise HTTPException(status_code=500, detail="Invalid encoded image") + +def encode_pil_to_base64(image): + with io.BytesIO() as output_bytes: + + if opts.samples_format.lower() == 'png': + use_metadata = False + metadata = PngImagePlugin.PngInfo() + for key, value in image.info.items(): + if isinstance(key, str) and isinstance(value, str): + metadata.add_text(key, value) + use_metadata = True + image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality) + + elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"): + parameters = image.info.get('parameters', None) + exif_bytes = piexif.dump({ + "Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") } + }) + if opts.samples_format.lower() in ("jpg", "jpeg"): + image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality) + else: + image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality) + + else: + raise HTTPException(status_code=500, detail="Invalid image format") + + bytes_data = output_bytes.getvalue() + + return base64.b64encode(bytes_data) + + +if __name__ == "__main__": + # manual_hack() + handler = EndpointHandler("./") + res = handler.__call__({}) + # print(res) diff --git a/models/Lora/koreanDollLikeness_v10.safetensors b/models/Lora/koreanDollLikeness_v10.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..093714f2d918f445e08e6c60c5f5fc46c20ab5d6 --- /dev/null +++ b/models/Lora/koreanDollLikeness_v10.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:62efe75048d55a096a238c6e8c4e12d61b36bf59e388a90589335f750923954c +size 151116540 diff --git a/models/Lora/stLouisLuxuriousWheels_v1.safetensors b/models/Lora/stLouisLuxuriousWheels_v1.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..5358a34fe687676d63b6e13c6f65959059c6024e --- /dev/null +++ b/models/Lora/stLouisLuxuriousWheels_v1.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f1efd7b748634120b70343bc3c3b425c06c51548431a1264a2fcb5368352349f +size 151112068 diff --git a/models/Lora/taiwanDollLikeness_v10.safetensors b/models/Lora/taiwanDollLikeness_v10.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..5287e0e6e682cad6f391b11e70521049dfc8de7c --- /dev/null +++ b/models/Lora/taiwanDollLikeness_v10.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5bbaabc04553d5821a3a45e4de5a02b2e66ecb00da677dd8ae862efd8ba59050 +size 151116105 diff --git a/models/Stable-diffusion/Put Stable Diffusion checkpoints here.txt b/models/Stable-diffusion/Put Stable Diffusion checkpoints here.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/Stable-diffusion/chilloutmix_NiPrunedFp32Fix.safetensors b/models/Stable-diffusion/chilloutmix_NiPrunedFp32Fix.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..5a3789cb7554fb6a55a17cc71fa8819b3e3ea14f --- /dev/null +++ b/models/Stable-diffusion/chilloutmix_NiPrunedFp32Fix.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fc2511737a54c5e80b89ab03e0ab4b98d051ab187f92860f3cd664dc9d08b271 +size 4265097179 diff --git a/models/VAE-approx/model.pt b/models/VAE-approx/model.pt new file mode 100644 index 0000000000000000000000000000000000000000..09c6b8f7fda5e15495c6203ca323d6573745d0af --- /dev/null +++ b/models/VAE-approx/model.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4f88c9078bb2238cdd0d8864671dd33e3f42e091e41f08903f3c15e4a54a9b39 +size 213777 diff --git a/models/VAE/Put VAE here.txt b/models/VAE/Put VAE here.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/models/VAE/vae-ft-mse-840000-ema-pruned.ckpt b/models/VAE/vae-ft-mse-840000-ema-pruned.ckpt new file mode 100644 index 0000000000000000000000000000000000000000..7322202939e53e60602bfed9b6374b566a367737 --- /dev/null +++ b/models/VAE/vae-ft-mse-840000-ema-pruned.ckpt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c6a580b13a5bc05a5e16e4dbb80608ff2ec251a162311590c1f34c013d7f3dab +size 334695179 diff --git a/models/deepbooru/Put your deepbooru release project folder here.txt b/models/deepbooru/Put your deepbooru release project folder here.txt new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/modules/api/api.py b/modules/api/api.py new file mode 100644 index 0000000000000000000000000000000000000000..5a9ac5f1aa745e4dd8c9ed5a107dd840f05c0ba6 --- /dev/null +++ b/modules/api/api.py @@ -0,0 +1,551 @@ +import base64 +import io +import time +import datetime +import uvicorn +from threading import Lock +from io import BytesIO +from gradio.processing_utils import decode_base64_to_file +from fastapi import APIRouter, Depends, FastAPI, HTTPException, Request, Response +from fastapi.security import HTTPBasic, HTTPBasicCredentials +from secrets import compare_digest + +import modules.shared as shared +from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing +from modules.api.models import * +from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images +from modules.textual_inversion.textual_inversion import create_embedding, train_embedding +from modules.textual_inversion.preprocess import preprocess +from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork +from PIL import PngImagePlugin,Image +from modules.sd_models import checkpoints_list +from modules.sd_models_config import find_checkpoint_config_near_filename +from modules.realesrgan_model import get_realesrgan_models +from modules import devices +from typing import List +import piexif +import piexif.helper + +def upscaler_to_index(name: str): + try: + return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) + except: + raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be one of these: {' , '.join([x.name for x in sd_upscalers])}") + +def script_name_to_index(name, scripts): + try: + return [script.title().lower() for script in scripts].index(name.lower()) + except: + raise HTTPException(status_code=422, detail=f"Script '{name}' not found") + +def validate_sampler_name(name): + config = sd_samplers.all_samplers_map.get(name, None) + if config is None: + raise HTTPException(status_code=404, detail="Sampler not found") + + return name + +def setUpscalers(req: dict): + reqDict = vars(req) + reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None) + reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None) + return reqDict + +def decode_base64_to_image(encoding): + if encoding.startswith("data:image/"): + encoding = encoding.split(";")[1].split(",")[1] + try: + image = Image.open(BytesIO(base64.b64decode(encoding))) + return image + except Exception as err: + raise HTTPException(status_code=500, detail="Invalid encoded image") + +def encode_pil_to_base64(image): + with io.BytesIO() as output_bytes: + + if opts.samples_format.lower() == 'png': + use_metadata = False + metadata = PngImagePlugin.PngInfo() + for key, value in image.info.items(): + if isinstance(key, str) and isinstance(value, str): + metadata.add_text(key, value) + use_metadata = True + image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality) + + elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"): + parameters = image.info.get('parameters', None) + exif_bytes = piexif.dump({ + "Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") } + }) + if opts.samples_format.lower() in ("jpg", "jpeg"): + image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality) + else: + image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality) + + else: + raise HTTPException(status_code=500, detail="Invalid image format") + + bytes_data = output_bytes.getvalue() + + return base64.b64encode(bytes_data) + +def api_middleware(app: FastAPI): + @app.middleware("http") + async def log_and_time(req: Request, call_next): + ts = time.time() + res: Response = await call_next(req) + duration = str(round(time.time() - ts, 4)) + res.headers["X-Process-Time"] = duration + endpoint = req.scope.get('path', 'err') + if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'): + print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format( + t = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"), + code = res.status_code, + ver = req.scope.get('http_version', '0.0'), + cli = req.scope.get('client', ('0:0.0.0', 0))[0], + prot = req.scope.get('scheme', 'err'), + method = req.scope.get('method', 'err'), + endpoint = endpoint, + duration = duration, + )) + return res + + +class Api: + def __init__(self, app: FastAPI, queue_lock: Lock): + if shared.cmd_opts.api_auth: + self.credentials = dict() + for auth in shared.cmd_opts.api_auth.split(","): + user, password = auth.split(":") + self.credentials[user] = password + + self.router = APIRouter() + self.app = app + self.queue_lock = queue_lock + api_middleware(self.app) + self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse) + self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse) + self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse) + self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse) + self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse) + self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse) + self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"]) + self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"]) + self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"]) + self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel) + self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"]) + self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel) + self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem]) + self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem]) + self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem]) + self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem]) + self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem]) + self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem]) + self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem]) + self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse) + self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"]) + self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse) + self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse) + self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse) + self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse) + self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse) + self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=MemoryResponse) + + def add_api_route(self, path: str, endpoint, **kwargs): + if shared.cmd_opts.api_auth: + return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs) + return self.app.add_api_route(path, endpoint, **kwargs) + + def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())): + if credentials.username in self.credentials: + if compare_digest(credentials.password, self.credentials[credentials.username]): + return True + + raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"}) + + def get_script(self, script_name, script_runner): + if script_name is None: + return None, None + + if not script_runner.scripts: + script_runner.initialize_scripts(False) + ui.create_ui() + + script_idx = script_name_to_index(script_name, script_runner.selectable_scripts) + script = script_runner.selectable_scripts[script_idx] + return script, script_idx + + def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): + script, script_idx = self.get_script(txt2imgreq.script_name, scripts.scripts_txt2img) + + populate = txt2imgreq.copy(update={ # Override __init__ params + "sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index), + "do_not_save_samples": True, + "do_not_save_grid": True + } + ) + if populate.sampler_name: + populate.sampler_index = None # prevent a warning later on + + args = vars(populate) + args.pop('script_name', None) + + with self.queue_lock: + p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args) + + shared.state.begin() + if script is not None: + p.outpath_grids = opts.outdir_txt2img_grids + p.outpath_samples = opts.outdir_txt2img_samples + p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args + processed = scripts.scripts_txt2img.run(p, *p.script_args) + else: + processed = process_images(p) + shared.state.end() + + b64images = list(map(encode_pil_to_base64, processed.images)) + + return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js()) + + def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI): + init_images = img2imgreq.init_images + if init_images is None: + raise HTTPException(status_code=404, detail="Init image not found") + + script, script_idx = self.get_script(img2imgreq.script_name, scripts.scripts_img2img) + + mask = img2imgreq.mask + if mask: + mask = decode_base64_to_image(mask) + + populate = img2imgreq.copy(update={ # Override __init__ params + "sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index), + "do_not_save_samples": True, + "do_not_save_grid": True, + "mask": mask + } + ) + if populate.sampler_name: + populate.sampler_index = None # prevent a warning later on + + args = vars(populate) + args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine. + args.pop('script_name', None) + + with self.queue_lock: + p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args) + p.init_images = [decode_base64_to_image(x) for x in init_images] + + shared.state.begin() + if script is not None: + p.outpath_grids = opts.outdir_img2img_grids + p.outpath_samples = opts.outdir_img2img_samples + p.script_args = [script_idx + 1] + [None] * (script.args_from - 1) + p.script_args + processed = scripts.scripts_img2img.run(p, *p.script_args) + else: + processed = process_images(p) + shared.state.end() + + b64images = list(map(encode_pil_to_base64, processed.images)) + + if not img2imgreq.include_init_images: + img2imgreq.init_images = None + img2imgreq.mask = None + + return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js()) + + def extras_single_image_api(self, req: ExtrasSingleImageRequest): + reqDict = setUpscalers(req) + + reqDict['image'] = decode_base64_to_image(reqDict['image']) + + with self.queue_lock: + result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict) + + return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1]) + + def extras_batch_images_api(self, req: ExtrasBatchImagesRequest): + reqDict = setUpscalers(req) + + def prepareFiles(file): + file = decode_base64_to_file(file.data, file_path=file.name) + file.orig_name = file.name + return file + + reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList'])) + reqDict.pop('imageList') + + with self.queue_lock: + result = postprocessing.run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict) + + return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1]) + + def pnginfoapi(self, req: PNGInfoRequest): + if(not req.image.strip()): + return PNGInfoResponse(info="") + + image = decode_base64_to_image(req.image.strip()) + if image is None: + return PNGInfoResponse(info="") + + geninfo, items = images.read_info_from_image(image) + if geninfo is None: + geninfo = "" + + items = {**{'parameters': geninfo}, **items} + + return PNGInfoResponse(info=geninfo, items=items) + + def progressapi(self, req: ProgressRequest = Depends()): + # copy from check_progress_call of ui.py + + if shared.state.job_count == 0: + return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo) + + # avoid dividing zero + progress = 0.01 + + if shared.state.job_count > 0: + progress += shared.state.job_no / shared.state.job_count + if shared.state.sampling_steps > 0: + progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps + + time_since_start = time.time() - shared.state.time_start + eta = (time_since_start/progress) + eta_relative = eta-time_since_start + + progress = min(progress, 1) + + shared.state.set_current_image() + + current_image = None + if shared.state.current_image and not req.skip_current_image: + current_image = encode_pil_to_base64(shared.state.current_image) + + return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo) + + def interrogateapi(self, interrogatereq: InterrogateRequest): + image_b64 = interrogatereq.image + if image_b64 is None: + raise HTTPException(status_code=404, detail="Image not found") + + img = decode_base64_to_image(image_b64) + img = img.convert('RGB') + + # Override object param + with self.queue_lock: + if interrogatereq.model == "clip": + processed = shared.interrogator.interrogate(img) + elif interrogatereq.model == "deepdanbooru": + processed = deepbooru.model.tag(img) + else: + raise HTTPException(status_code=404, detail="Model not found") + + return InterrogateResponse(caption=processed) + + def interruptapi(self): + shared.state.interrupt() + + return {} + + def skip(self): + shared.state.skip() + + def get_config(self): + options = {} + for key in shared.opts.data.keys(): + metadata = shared.opts.data_labels.get(key) + if(metadata is not None): + options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)}) + else: + options.update({key: shared.opts.data.get(key, None)}) + + return options + + def set_config(self, req: Dict[str, Any]): + for k, v in req.items(): + shared.opts.set(k, v) + + shared.opts.save(shared.config_filename) + return + + def get_cmd_flags(self): + return vars(shared.cmd_opts) + + def get_samplers(self): + return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers] + + def get_upscalers(self): + return [ + { + "name": upscaler.name, + "model_name": upscaler.scaler.model_name, + "model_path": upscaler.data_path, + "model_url": None, + "scale": upscaler.scale, + } + for upscaler in shared.sd_upscalers + ] + + def get_sd_models(self): + return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()] + + def get_hypernetworks(self): + return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks] + + def get_face_restorers(self): + return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers] + + def get_realesrgan_models(self): + return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)] + + def get_prompt_styles(self): + styleList = [] + for k in shared.prompt_styles.styles: + style = shared.prompt_styles.styles[k] + styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]}) + + return styleList + + def get_embeddings(self): + db = sd_hijack.model_hijack.embedding_db + + def convert_embedding(embedding): + return { + "step": embedding.step, + "sd_checkpoint": embedding.sd_checkpoint, + "sd_checkpoint_name": embedding.sd_checkpoint_name, + "shape": embedding.shape, + "vectors": embedding.vectors, + } + + def convert_embeddings(embeddings): + return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()} + + return { + "loaded": convert_embeddings(db.word_embeddings), + "skipped": convert_embeddings(db.skipped_embeddings), + } + + def refresh_checkpoints(self): + shared.refresh_checkpoints() + + def create_embedding(self, args: dict): + try: + shared.state.begin() + filename = create_embedding(**args) # create empty embedding + sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used + shared.state.end() + return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename)) + except AssertionError as e: + shared.state.end() + return TrainResponse(info = "create embedding error: {error}".format(error = e)) + + def create_hypernetwork(self, args: dict): + try: + shared.state.begin() + filename = create_hypernetwork(**args) # create empty embedding + shared.state.end() + return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename)) + except AssertionError as e: + shared.state.end() + return TrainResponse(info = "create hypernetwork error: {error}".format(error = e)) + + def preprocess(self, args: dict): + try: + shared.state.begin() + preprocess(**args) # quick operation unless blip/booru interrogation is enabled + shared.state.end() + return PreprocessResponse(info = 'preprocess complete') + except KeyError as e: + shared.state.end() + return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e)) + except AssertionError as e: + shared.state.end() + return PreprocessResponse(info = "preprocess error: {error}".format(error = e)) + except FileNotFoundError as e: + shared.state.end() + return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e)) + + def train_embedding(self, args: dict): + try: + shared.state.begin() + apply_optimizations = shared.opts.training_xattention_optimizations + error = None + filename = '' + if not apply_optimizations: + sd_hijack.undo_optimizations() + try: + embedding, filename = train_embedding(**args) # can take a long time to complete + except Exception as e: + error = e + finally: + if not apply_optimizations: + sd_hijack.apply_optimizations() + shared.state.end() + return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error)) + except AssertionError as msg: + shared.state.end() + return TrainResponse(info = "train embedding error: {msg}".format(msg = msg)) + + def train_hypernetwork(self, args: dict): + try: + shared.state.begin() + shared.loaded_hypernetworks = [] + apply_optimizations = shared.opts.training_xattention_optimizations + error = None + filename = '' + if not apply_optimizations: + sd_hijack.undo_optimizations() + try: + hypernetwork, filename = train_hypernetwork(**args) + except Exception as e: + error = e + finally: + shared.sd_model.cond_stage_model.to(devices.device) + shared.sd_model.first_stage_model.to(devices.device) + if not apply_optimizations: + sd_hijack.apply_optimizations() + shared.state.end() + return TrainResponse(info="train embedding complete: filename: {filename} error: {error}".format(filename=filename, error=error)) + except AssertionError as msg: + shared.state.end() + return TrainResponse(info="train embedding error: {error}".format(error=error)) + + def get_memory(self): + try: + import os, psutil + process = psutil.Process(os.getpid()) + res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values + ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe + ram = { 'free': ram_total - res.rss, 'used': res.rss, 'total': ram_total } + except Exception as err: + ram = { 'error': f'{err}' } + try: + import torch + if torch.cuda.is_available(): + s = torch.cuda.mem_get_info() + system = { 'free': s[0], 'used': s[1] - s[0], 'total': s[1] } + s = dict(torch.cuda.memory_stats(shared.device)) + allocated = { 'current': s['allocated_bytes.all.current'], 'peak': s['allocated_bytes.all.peak'] } + reserved = { 'current': s['reserved_bytes.all.current'], 'peak': s['reserved_bytes.all.peak'] } + active = { 'current': s['active_bytes.all.current'], 'peak': s['active_bytes.all.peak'] } + inactive = { 'current': s['inactive_split_bytes.all.current'], 'peak': s['inactive_split_bytes.all.peak'] } + warnings = { 'retries': s['num_alloc_retries'], 'oom': s['num_ooms'] } + cuda = { + 'system': system, + 'active': active, + 'allocated': allocated, + 'reserved': reserved, + 'inactive': inactive, + 'events': warnings, + } + else: + cuda = { 'error': 'unavailable' } + except Exception as err: + cuda = { 'error': f'{err}' } + return MemoryResponse(ram = ram, cuda = cuda) + + def launch(self, server_name, port): + self.app.include_router(self.router) + uvicorn.run(self.app, host=server_name, port=port) diff --git a/modules/api/models.py b/modules/api/models.py new file mode 100644 index 0000000000000000000000000000000000000000..cba43d3b1807d547acda33256faf5db05dd216a6 --- /dev/null +++ b/modules/api/models.py @@ -0,0 +1,269 @@ +import inspect +from pydantic import BaseModel, Field, create_model +from typing import Any, Optional +from typing_extensions import Literal +from inflection import underscore +from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img +from modules.shared import sd_upscalers, opts, parser +from typing import Dict, List + +API_NOT_ALLOWED = [ + "self", + "kwargs", + "sd_model", + "outpath_samples", + "outpath_grids", + "sampler_index", + "do_not_save_samples", + "do_not_save_grid", + "extra_generation_params", + "overlay_images", + "do_not_reload_embeddings", + "seed_enable_extras", + "prompt_for_display", + "sampler_noise_scheduler_override", + "ddim_discretize" +] + +class ModelDef(BaseModel): + """Assistance Class for Pydantic Dynamic Model Generation""" + + field: str + field_alias: str + field_type: Any + field_value: Any + field_exclude: bool = False + + +class PydanticModelGenerator: + """ + Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about: + source_data is a snapshot of the default values produced by the class + params are the names of the actual keys required by __init__ + """ + + def __init__( + self, + model_name: str = None, + class_instance = None, + additional_fields = None, + ): + def field_type_generator(k, v): + # field_type = str if not overrides.get(k) else overrides[k]["type"] + # print(k, v.annotation, v.default) + field_type = v.annotation + + return Optional[field_type] + + def merge_class_params(class_): + all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_))) + parameters = {} + for classes in all_classes: + parameters = {**parameters, **inspect.signature(classes.__init__).parameters} + return parameters + + + self._model_name = model_name + self._class_data = merge_class_params(class_instance) + + self._model_def = [ + ModelDef( + field=underscore(k), + field_alias=k, + field_type=field_type_generator(k, v), + field_value=v.default + ) + for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED + ] + + for fields in additional_fields: + self._model_def.append(ModelDef( + field=underscore(fields["key"]), + field_alias=fields["key"], + field_type=fields["type"], + field_value=fields["default"], + field_exclude=fields["exclude"] if "exclude" in fields else False)) + + def generate_model(self): + """ + Creates a pydantic BaseModel + from the json and overrides provided at initialization + """ + fields = { + d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias, exclude=d.field_exclude)) for d in self._model_def + } + DynamicModel = create_model(self._model_name, **fields) + DynamicModel.__config__.allow_population_by_field_name = True + DynamicModel.__config__.allow_mutation = True + return DynamicModel + +StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( + "StableDiffusionProcessingTxt2Img", + StableDiffusionProcessingTxt2Img, + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}] +).generate_model() + +StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( + "StableDiffusionProcessingImg2Img", + StableDiffusionProcessingImg2Img, + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}] +).generate_model() + +class TextToImageResponse(BaseModel): + images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.") + parameters: dict + info: str + +class ImageToImageResponse(BaseModel): + images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.") + parameters: dict + info: str + +class ExtrasBaseRequest(BaseModel): + resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.") + show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?") + gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.") + codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.") + codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.") + upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8, description="By how much to upscale the image, only used when resize_mode=0.") + upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.") + upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.") + upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?") + upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}") + upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}") + extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.") + upscale_first: bool = Field(default=False, title="Upscale first", description="Should the upscaler run before restoring faces?") + +class ExtraBaseResponse(BaseModel): + html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.") + +class ExtrasSingleImageRequest(ExtrasBaseRequest): + image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") + +class ExtrasSingleImageResponse(ExtraBaseResponse): + image: str = Field(default=None, title="Image", description="The generated image in base64 format.") + +class FileData(BaseModel): + data: str = Field(title="File data", description="Base64 representation of the file") + name: str = Field(title="File name") + +class ExtrasBatchImagesRequest(ExtrasBaseRequest): + imageList: List[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings") + +class ExtrasBatchImagesResponse(ExtraBaseResponse): + images: List[str] = Field(title="Images", description="The generated images in base64 format.") + +class PNGInfoRequest(BaseModel): + image: str = Field(title="Image", description="The base64 encoded PNG image") + +class PNGInfoResponse(BaseModel): + info: str = Field(title="Image info", description="A string with the parameters used to generate the image") + items: dict = Field(title="Items", description="An object containing all the info the image had") + +class ProgressRequest(BaseModel): + skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization") + +class ProgressResponse(BaseModel): + progress: float = Field(title="Progress", description="The progress with a range of 0 to 1") + eta_relative: float = Field(title="ETA in secs") + state: dict = Field(title="State", description="The current state snapshot") + current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.") + textinfo: str = Field(default=None, title="Info text", description="Info text used by WebUI.") + +class InterrogateRequest(BaseModel): + image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") + model: str = Field(default="clip", title="Model", description="The interrogate model used.") + +class InterrogateResponse(BaseModel): + caption: str = Field(default=None, title="Caption", description="The generated caption for the image.") + +class TrainResponse(BaseModel): + info: str = Field(title="Train info", description="Response string from train embedding or hypernetwork task.") + +class CreateResponse(BaseModel): + info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.") + +class PreprocessResponse(BaseModel): + info: str = Field(title="Preprocess info", description="Response string from preprocessing task.") + +fields = {} +for key, metadata in opts.data_labels.items(): + value = opts.data.get(key) + optType = opts.typemap.get(type(metadata.default), type(value)) + + if (metadata is not None): + fields.update({key: (Optional[optType], Field( + default=metadata.default ,description=metadata.label))}) + else: + fields.update({key: (Optional[optType], Field())}) + +OptionsModel = create_model("Options", **fields) + +flags = {} +_options = vars(parser)['_option_string_actions'] +for key in _options: + if(_options[key].dest != 'help'): + flag = _options[key] + _type = str + if _options[key].default is not None: _type = type(_options[key].default) + flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))}) + +FlagsModel = create_model("Flags", **flags) + +class SamplerItem(BaseModel): + name: str = Field(title="Name") + aliases: List[str] = Field(title="Aliases") + options: Dict[str, str] = Field(title="Options") + +class UpscalerItem(BaseModel): + name: str = Field(title="Name") + model_name: Optional[str] = Field(title="Model Name") + model_path: Optional[str] = Field(title="Path") + model_url: Optional[str] = Field(title="URL") + scale: Optional[float] = Field(title="Scale") + +class SDModelItem(BaseModel): + title: str = Field(title="Title") + model_name: str = Field(title="Model Name") + hash: Optional[str] = Field(title="Short hash") + sha256: Optional[str] = Field(title="sha256 hash") + filename: str = Field(title="Filename") + config: Optional[str] = Field(title="Config file") + +class HypernetworkItem(BaseModel): + name: str = Field(title="Name") + path: Optional[str] = Field(title="Path") + +class FaceRestorerItem(BaseModel): + name: str = Field(title="Name") + cmd_dir: Optional[str] = Field(title="Path") + +class RealesrganItem(BaseModel): + name: str = Field(title="Name") + path: Optional[str] = Field(title="Path") + scale: Optional[int] = Field(title="Scale") + +class PromptStyleItem(BaseModel): + name: str = Field(title="Name") + prompt: Optional[str] = Field(title="Prompt") + negative_prompt: Optional[str] = Field(title="Negative Prompt") + +class ArtistItem(BaseModel): + name: str = Field(title="Name") + score: float = Field(title="Score") + category: str = Field(title="Category") + +class EmbeddingItem(BaseModel): + step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available") + sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available") + sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead") + shape: int = Field(title="Shape", description="The length of each individual vector in the embedding") + vectors: int = Field(title="Vectors", description="The number of vectors in the embedding") + +class EmbeddingsResponse(BaseModel): + loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model") + skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)") + +class MemoryResponse(BaseModel): + ram: dict = Field(title="RAM", description="System memory stats") + cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats") diff --git a/modules/call_queue.py b/modules/call_queue.py new file mode 100644 index 0000000000000000000000000000000000000000..6eabc06441b531f89e55f805096af97ede4547ee --- /dev/null +++ b/modules/call_queue.py @@ -0,0 +1,109 @@ +import html +import sys +import threading +import traceback +import time + +from modules import shared, progress + +queue_lock = threading.Lock() + + +def wrap_queued_call(func): + def f(*args, **kwargs): + with queue_lock: + res = func(*args, **kwargs) + + return res + + return f + + +def wrap_gradio_gpu_call(func, extra_outputs=None): + def f(*args, **kwargs): + + # if the first argument is a string that says "task(...)", it is treated as a job id + if len(args) > 0 and type(args[0]) == str and args[0][0:5] == "task(" and args[0][-1] == ")": + id_task = args[0] + progress.add_task_to_queue(id_task) + else: + id_task = None + + with queue_lock: + shared.state.begin() + progress.start_task(id_task) + + try: + res = func(*args, **kwargs) + finally: + progress.finish_task(id_task) + + shared.state.end() + + return res + + return wrap_gradio_call(f, extra_outputs=extra_outputs, add_stats=True) + + +def wrap_gradio_call(func, extra_outputs=None, add_stats=False): + def f(*args, extra_outputs_array=extra_outputs, **kwargs): + run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats + if run_memmon: + shared.mem_mon.monitor() + t = time.perf_counter() + + try: + res = list(func(*args, **kwargs)) + except Exception as e: + # When printing out our debug argument list, do not print out more than a MB of text + max_debug_str_len = 131072 # (1024*1024)/8 + + print("Error completing request", file=sys.stderr) + argStr = f"Arguments: {str(args)} {str(kwargs)}" + print(argStr[:max_debug_str_len], file=sys.stderr) + if len(argStr) > max_debug_str_len: + print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr) + + print(traceback.format_exc(), file=sys.stderr) + + shared.state.job = "" + shared.state.job_count = 0 + + if extra_outputs_array is None: + extra_outputs_array = [None, ''] + + res = extra_outputs_array + [f"
{html.escape(type(e).__name__+': '+str(e))}
"] + + shared.state.skipped = False + shared.state.interrupted = False + shared.state.job_count = 0 + + if not add_stats: + return tuple(res) + + elapsed = time.perf_counter() - t + elapsed_m = int(elapsed // 60) + elapsed_s = elapsed % 60 + elapsed_text = f"{elapsed_s:.2f}s" + if elapsed_m > 0: + elapsed_text = f"{elapsed_m}m "+elapsed_text + + if run_memmon: + mem_stats = {k: -(v//-(1024*1024)) for k, v in shared.mem_mon.stop().items()} + active_peak = mem_stats['active_peak'] + reserved_peak = mem_stats['reserved_peak'] + sys_peak = mem_stats['system_peak'] + sys_total = mem_stats['total'] + sys_pct = round(sys_peak/max(sys_total, 1) * 100, 2) + + vram_html = f"

Torch active/reserved: {active_peak}/{reserved_peak} MiB, Sys VRAM: {sys_peak}/{sys_total} MiB ({sys_pct}%)

" + else: + vram_html = '' + + # last item is always HTML + res[-1] += f"

Time taken: {elapsed_text}

{vram_html}
" + + return tuple(res) + + return f + diff --git a/modules/codeformer/codeformer_arch.py b/modules/codeformer/codeformer_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..11dcc3ee76511218c64977c2ecbb306cecd892c3 --- /dev/null +++ b/modules/codeformer/codeformer_arch.py @@ -0,0 +1,278 @@ +# this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py + +import math +import numpy as np +import torch +from torch import nn, Tensor +import torch.nn.functional as F +from typing import Optional, List + +from modules.codeformer.vqgan_arch import * +from basicsr.utils import get_root_logger +from basicsr.utils.registry import ARCH_REGISTRY + +def calc_mean_std(feat, eps=1e-5): + """Calculate mean and std for adaptive_instance_normalization. + + Args: + feat (Tensor): 4D tensor. + eps (float): A small value added to the variance to avoid + divide-by-zero. Default: 1e-5. + """ + size = feat.size() + assert len(size) == 4, 'The input feature should be 4D tensor.' + b, c = size[:2] + feat_var = feat.view(b, c, -1).var(dim=2) + eps + feat_std = feat_var.sqrt().view(b, c, 1, 1) + feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) + return feat_mean, feat_std + + +def adaptive_instance_normalization(content_feat, style_feat): + """Adaptive instance normalization. + + Adjust the reference features to have the similar color and illuminations + as those in the degradate features. + + Args: + content_feat (Tensor): The reference feature. + style_feat (Tensor): The degradate features. + """ + size = content_feat.size() + style_mean, style_std = calc_mean_std(style_feat) + content_mean, content_std = calc_mean_std(content_feat) + normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) + return normalized_feat * style_std.expand(size) + style_mean.expand(size) + + +class PositionEmbeddingSine(nn.Module): + """ + This is a more standard version of the position embedding, very similar to the one + used by the Attention is all you need paper, generalized to work on images. + """ + + def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): + super().__init__() + self.num_pos_feats = num_pos_feats + self.temperature = temperature + self.normalize = normalize + if scale is not None and normalize is False: + raise ValueError("normalize should be True if scale is passed") + if scale is None: + scale = 2 * math.pi + self.scale = scale + + def forward(self, x, mask=None): + if mask is None: + mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) + not_mask = ~mask + y_embed = not_mask.cumsum(1, dtype=torch.float32) + x_embed = not_mask.cumsum(2, dtype=torch.float32) + if self.normalize: + eps = 1e-6 + y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale + + dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) + dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) + + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack( + (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos_y = torch.stack( + (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 + ).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + return pos + +def _get_activation_fn(activation): + """Return an activation function given a string""" + if activation == "relu": + return F.relu + if activation == "gelu": + return F.gelu + if activation == "glu": + return F.glu + raise RuntimeError(F"activation should be relu/gelu, not {activation}.") + + +class TransformerSALayer(nn.Module): + def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"): + super().__init__() + self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout) + # Implementation of Feedforward model - MLP + self.linear1 = nn.Linear(embed_dim, dim_mlp) + self.dropout = nn.Dropout(dropout) + self.linear2 = nn.Linear(dim_mlp, embed_dim) + + self.norm1 = nn.LayerNorm(embed_dim) + self.norm2 = nn.LayerNorm(embed_dim) + self.dropout1 = nn.Dropout(dropout) + self.dropout2 = nn.Dropout(dropout) + + self.activation = _get_activation_fn(activation) + + def with_pos_embed(self, tensor, pos: Optional[Tensor]): + return tensor if pos is None else tensor + pos + + def forward(self, tgt, + tgt_mask: Optional[Tensor] = None, + tgt_key_padding_mask: Optional[Tensor] = None, + query_pos: Optional[Tensor] = None): + + # self attention + tgt2 = self.norm1(tgt) + q = k = self.with_pos_embed(tgt2, query_pos) + tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, + key_padding_mask=tgt_key_padding_mask)[0] + tgt = tgt + self.dropout1(tgt2) + + # ffn + tgt2 = self.norm2(tgt) + tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) + tgt = tgt + self.dropout2(tgt2) + return tgt + +class Fuse_sft_block(nn.Module): + def __init__(self, in_ch, out_ch): + super().__init__() + self.encode_enc = ResBlock(2*in_ch, out_ch) + + self.scale = nn.Sequential( + nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), + nn.LeakyReLU(0.2, True), + nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) + + self.shift = nn.Sequential( + nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), + nn.LeakyReLU(0.2, True), + nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) + + def forward(self, enc_feat, dec_feat, w=1): + enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1)) + scale = self.scale(enc_feat) + shift = self.shift(enc_feat) + residual = w * (dec_feat * scale + shift) + out = dec_feat + residual + return out + + +@ARCH_REGISTRY.register() +class CodeFormer(VQAutoEncoder): + def __init__(self, dim_embd=512, n_head=8, n_layers=9, + codebook_size=1024, latent_size=256, + connect_list=['32', '64', '128', '256'], + fix_modules=['quantize','generator']): + super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size) + + if fix_modules is not None: + for module in fix_modules: + for param in getattr(self, module).parameters(): + param.requires_grad = False + + self.connect_list = connect_list + self.n_layers = n_layers + self.dim_embd = dim_embd + self.dim_mlp = dim_embd*2 + + self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd)) + self.feat_emb = nn.Linear(256, self.dim_embd) + + # transformer + self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) + for _ in range(self.n_layers)]) + + # logits_predict head + self.idx_pred_layer = nn.Sequential( + nn.LayerNorm(dim_embd), + nn.Linear(dim_embd, codebook_size, bias=False)) + + self.channels = { + '16': 512, + '32': 256, + '64': 256, + '128': 128, + '256': 128, + '512': 64, + } + + # after second residual block for > 16, before attn layer for ==16 + self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18} + # after first residual block for > 16, before attn layer for ==16 + self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21} + + # fuse_convs_dict + self.fuse_convs_dict = nn.ModuleDict() + for f_size in self.connect_list: + in_ch = self.channels[f_size] + self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch) + + def _init_weights(self, module): + if isinstance(module, (nn.Linear, nn.Embedding)): + module.weight.data.normal_(mean=0.0, std=0.02) + if isinstance(module, nn.Linear) and module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + def forward(self, x, w=0, detach_16=True, code_only=False, adain=False): + # ################### Encoder ##################### + enc_feat_dict = {} + out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] + for i, block in enumerate(self.encoder.blocks): + x = block(x) + if i in out_list: + enc_feat_dict[str(x.shape[-1])] = x.clone() + + lq_feat = x + # ################# Transformer ################### + # quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat) + pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1) + # BCHW -> BC(HW) -> (HW)BC + feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1)) + query_emb = feat_emb + # Transformer encoder + for layer in self.ft_layers: + query_emb = layer(query_emb, query_pos=pos_emb) + + # output logits + logits = self.idx_pred_layer(query_emb) # (hw)bn + logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n + + if code_only: # for training stage II + # logits doesn't need softmax before cross_entropy loss + return logits, lq_feat + + # ################# Quantization ################### + # if self.training: + # quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight]) + # # b(hw)c -> bc(hw) -> bchw + # quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape) + # ------------ + soft_one_hot = F.softmax(logits, dim=2) + _, top_idx = torch.topk(soft_one_hot, 1, dim=2) + quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256]) + # preserve gradients + # quant_feat = lq_feat + (quant_feat - lq_feat).detach() + + if detach_16: + quant_feat = quant_feat.detach() # for training stage III + if adain: + quant_feat = adaptive_instance_normalization(quant_feat, lq_feat) + + # ################## Generator #################### + x = quant_feat + fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] + + for i, block in enumerate(self.generator.blocks): + x = block(x) + if i in fuse_list: # fuse after i-th block + f_size = str(x.shape[-1]) + if w>0: + x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w) + out = x + # logits doesn't need softmax before cross_entropy loss + return out, logits, lq_feat \ No newline at end of file diff --git a/modules/codeformer/vqgan_arch.py b/modules/codeformer/vqgan_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..e729368383aa2d8c224289284ec5489d554f9a33 --- /dev/null +++ b/modules/codeformer/vqgan_arch.py @@ -0,0 +1,437 @@ +# this file is copied from CodeFormer repository. Please see comment in modules/codeformer_model.py + +''' +VQGAN code, adapted from the original created by the Unleashing Transformers authors: +https://github.com/samb-t/unleashing-transformers/blob/master/models/vqgan.py + +''' +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +import copy +from basicsr.utils import get_root_logger +from basicsr.utils.registry import ARCH_REGISTRY + +def normalize(in_channels): + return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) + + +@torch.jit.script +def swish(x): + return x*torch.sigmoid(x) + + +# Define VQVAE classes +class VectorQuantizer(nn.Module): + def __init__(self, codebook_size, emb_dim, beta): + super(VectorQuantizer, self).__init__() + self.codebook_size = codebook_size # number of embeddings + self.emb_dim = emb_dim # dimension of embedding + self.beta = beta # commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 + self.embedding = nn.Embedding(self.codebook_size, self.emb_dim) + self.embedding.weight.data.uniform_(-1.0 / self.codebook_size, 1.0 / self.codebook_size) + + def forward(self, z): + # reshape z -> (batch, height, width, channel) and flatten + z = z.permute(0, 2, 3, 1).contiguous() + z_flattened = z.view(-1, self.emb_dim) + + # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z + d = (z_flattened ** 2).sum(dim=1, keepdim=True) + (self.embedding.weight**2).sum(1) - \ + 2 * torch.matmul(z_flattened, self.embedding.weight.t()) + + mean_distance = torch.mean(d) + # find closest encodings + # min_encoding_indices = torch.argmin(d, dim=1).unsqueeze(1) + min_encoding_scores, min_encoding_indices = torch.topk(d, 1, dim=1, largest=False) + # [0-1], higher score, higher confidence + min_encoding_scores = torch.exp(-min_encoding_scores/10) + + min_encodings = torch.zeros(min_encoding_indices.shape[0], self.codebook_size).to(z) + min_encodings.scatter_(1, min_encoding_indices, 1) + + # get quantized latent vectors + z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) + # compute loss for embedding + loss = torch.mean((z_q.detach()-z)**2) + self.beta * torch.mean((z_q - z.detach()) ** 2) + # preserve gradients + z_q = z + (z_q - z).detach() + + # perplexity + e_mean = torch.mean(min_encodings, dim=0) + perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) + # reshape back to match original input shape + z_q = z_q.permute(0, 3, 1, 2).contiguous() + + return z_q, loss, { + "perplexity": perplexity, + "min_encodings": min_encodings, + "min_encoding_indices": min_encoding_indices, + "min_encoding_scores": min_encoding_scores, + "mean_distance": mean_distance + } + + def get_codebook_feat(self, indices, shape): + # input indices: batch*token_num -> (batch*token_num)*1 + # shape: batch, height, width, channel + indices = indices.view(-1,1) + min_encodings = torch.zeros(indices.shape[0], self.codebook_size).to(indices) + min_encodings.scatter_(1, indices, 1) + # get quantized latent vectors + z_q = torch.matmul(min_encodings.float(), self.embedding.weight) + + if shape is not None: # reshape back to match original input shape + z_q = z_q.view(shape).permute(0, 3, 1, 2).contiguous() + + return z_q + + +class GumbelQuantizer(nn.Module): + def __init__(self, codebook_size, emb_dim, num_hiddens, straight_through=False, kl_weight=5e-4, temp_init=1.0): + super().__init__() + self.codebook_size = codebook_size # number of embeddings + self.emb_dim = emb_dim # dimension of embedding + self.straight_through = straight_through + self.temperature = temp_init + self.kl_weight = kl_weight + self.proj = nn.Conv2d(num_hiddens, codebook_size, 1) # projects last encoder layer to quantized logits + self.embed = nn.Embedding(codebook_size, emb_dim) + + def forward(self, z): + hard = self.straight_through if self.training else True + + logits = self.proj(z) + + soft_one_hot = F.gumbel_softmax(logits, tau=self.temperature, dim=1, hard=hard) + + z_q = torch.einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight) + + # + kl divergence to the prior loss + qy = F.softmax(logits, dim=1) + diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.codebook_size + 1e-10), dim=1).mean() + min_encoding_indices = soft_one_hot.argmax(dim=1) + + return z_q, diff, { + "min_encoding_indices": min_encoding_indices + } + + +class Downsample(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) + + def forward(self, x): + pad = (0, 1, 0, 1) + x = torch.nn.functional.pad(x, pad, mode="constant", value=0) + x = self.conv(x) + return x + + +class Upsample(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) + + def forward(self, x): + x = F.interpolate(x, scale_factor=2.0, mode="nearest") + x = self.conv(x) + + return x + + +class ResBlock(nn.Module): + def __init__(self, in_channels, out_channels=None): + super(ResBlock, self).__init__() + self.in_channels = in_channels + self.out_channels = in_channels if out_channels is None else out_channels + self.norm1 = normalize(in_channels) + self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) + self.norm2 = normalize(out_channels) + self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) + if self.in_channels != self.out_channels: + self.conv_out = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) + + def forward(self, x_in): + x = x_in + x = self.norm1(x) + x = swish(x) + x = self.conv1(x) + x = self.norm2(x) + x = swish(x) + x = self.conv2(x) + if self.in_channels != self.out_channels: + x_in = self.conv_out(x_in) + + return x + x_in + + +class AttnBlock(nn.Module): + def __init__(self, in_channels): + super().__init__() + self.in_channels = in_channels + + self.norm = normalize(in_channels) + self.q = torch.nn.Conv2d( + in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0 + ) + self.k = torch.nn.Conv2d( + in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0 + ) + self.v = torch.nn.Conv2d( + in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0 + ) + self.proj_out = torch.nn.Conv2d( + in_channels, + in_channels, + kernel_size=1, + stride=1, + padding=0 + ) + + def forward(self, x): + h_ = x + h_ = self.norm(h_) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q.shape + q = q.reshape(b, c, h*w) + q = q.permute(0, 2, 1) + k = k.reshape(b, c, h*w) + w_ = torch.bmm(q, k) + w_ = w_ * (int(c)**(-0.5)) + w_ = F.softmax(w_, dim=2) + + # attend to values + v = v.reshape(b, c, h*w) + w_ = w_.permute(0, 2, 1) + h_ = torch.bmm(v, w_) + h_ = h_.reshape(b, c, h, w) + + h_ = self.proj_out(h_) + + return x+h_ + + +class Encoder(nn.Module): + def __init__(self, in_channels, nf, emb_dim, ch_mult, num_res_blocks, resolution, attn_resolutions): + super().__init__() + self.nf = nf + self.num_resolutions = len(ch_mult) + self.num_res_blocks = num_res_blocks + self.resolution = resolution + self.attn_resolutions = attn_resolutions + + curr_res = self.resolution + in_ch_mult = (1,)+tuple(ch_mult) + + blocks = [] + # initial convultion + blocks.append(nn.Conv2d(in_channels, nf, kernel_size=3, stride=1, padding=1)) + + # residual and downsampling blocks, with attention on smaller res (16x16) + for i in range(self.num_resolutions): + block_in_ch = nf * in_ch_mult[i] + block_out_ch = nf * ch_mult[i] + for _ in range(self.num_res_blocks): + blocks.append(ResBlock(block_in_ch, block_out_ch)) + block_in_ch = block_out_ch + if curr_res in attn_resolutions: + blocks.append(AttnBlock(block_in_ch)) + + if i != self.num_resolutions - 1: + blocks.append(Downsample(block_in_ch)) + curr_res = curr_res // 2 + + # non-local attention block + blocks.append(ResBlock(block_in_ch, block_in_ch)) + blocks.append(AttnBlock(block_in_ch)) + blocks.append(ResBlock(block_in_ch, block_in_ch)) + + # normalise and convert to latent size + blocks.append(normalize(block_in_ch)) + blocks.append(nn.Conv2d(block_in_ch, emb_dim, kernel_size=3, stride=1, padding=1)) + self.blocks = nn.ModuleList(blocks) + + def forward(self, x): + for block in self.blocks: + x = block(x) + + return x + + +class Generator(nn.Module): + def __init__(self, nf, emb_dim, ch_mult, res_blocks, img_size, attn_resolutions): + super().__init__() + self.nf = nf + self.ch_mult = ch_mult + self.num_resolutions = len(self.ch_mult) + self.num_res_blocks = res_blocks + self.resolution = img_size + self.attn_resolutions = attn_resolutions + self.in_channels = emb_dim + self.out_channels = 3 + block_in_ch = self.nf * self.ch_mult[-1] + curr_res = self.resolution // 2 ** (self.num_resolutions-1) + + blocks = [] + # initial conv + blocks.append(nn.Conv2d(self.in_channels, block_in_ch, kernel_size=3, stride=1, padding=1)) + + # non-local attention block + blocks.append(ResBlock(block_in_ch, block_in_ch)) + blocks.append(AttnBlock(block_in_ch)) + blocks.append(ResBlock(block_in_ch, block_in_ch)) + + for i in reversed(range(self.num_resolutions)): + block_out_ch = self.nf * self.ch_mult[i] + + for _ in range(self.num_res_blocks): + blocks.append(ResBlock(block_in_ch, block_out_ch)) + block_in_ch = block_out_ch + + if curr_res in self.attn_resolutions: + blocks.append(AttnBlock(block_in_ch)) + + if i != 0: + blocks.append(Upsample(block_in_ch)) + curr_res = curr_res * 2 + + blocks.append(normalize(block_in_ch)) + blocks.append(nn.Conv2d(block_in_ch, self.out_channels, kernel_size=3, stride=1, padding=1)) + + self.blocks = nn.ModuleList(blocks) + + + def forward(self, x): + for block in self.blocks: + x = block(x) + + return x + + +@ARCH_REGISTRY.register() +class VQAutoEncoder(nn.Module): + def __init__(self, img_size, nf, ch_mult, quantizer="nearest", res_blocks=2, attn_resolutions=[16], codebook_size=1024, emb_dim=256, + beta=0.25, gumbel_straight_through=False, gumbel_kl_weight=1e-8, model_path=None): + super().__init__() + logger = get_root_logger() + self.in_channels = 3 + self.nf = nf + self.n_blocks = res_blocks + self.codebook_size = codebook_size + self.embed_dim = emb_dim + self.ch_mult = ch_mult + self.resolution = img_size + self.attn_resolutions = attn_resolutions + self.quantizer_type = quantizer + self.encoder = Encoder( + self.in_channels, + self.nf, + self.embed_dim, + self.ch_mult, + self.n_blocks, + self.resolution, + self.attn_resolutions + ) + if self.quantizer_type == "nearest": + self.beta = beta #0.25 + self.quantize = VectorQuantizer(self.codebook_size, self.embed_dim, self.beta) + elif self.quantizer_type == "gumbel": + self.gumbel_num_hiddens = emb_dim + self.straight_through = gumbel_straight_through + self.kl_weight = gumbel_kl_weight + self.quantize = GumbelQuantizer( + self.codebook_size, + self.embed_dim, + self.gumbel_num_hiddens, + self.straight_through, + self.kl_weight + ) + self.generator = Generator( + self.nf, + self.embed_dim, + self.ch_mult, + self.n_blocks, + self.resolution, + self.attn_resolutions + ) + + if model_path is not None: + chkpt = torch.load(model_path, map_location='cpu') + if 'params_ema' in chkpt: + self.load_state_dict(torch.load(model_path, map_location='cpu')['params_ema']) + logger.info(f'vqgan is loaded from: {model_path} [params_ema]') + elif 'params' in chkpt: + self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) + logger.info(f'vqgan is loaded from: {model_path} [params]') + else: + raise ValueError('Wrong params!') + + + def forward(self, x): + x = self.encoder(x) + quant, codebook_loss, quant_stats = self.quantize(x) + x = self.generator(quant) + return x, codebook_loss, quant_stats + + + +# patch based discriminator +@ARCH_REGISTRY.register() +class VQGANDiscriminator(nn.Module): + def __init__(self, nc=3, ndf=64, n_layers=4, model_path=None): + super().__init__() + + layers = [nn.Conv2d(nc, ndf, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.2, True)] + ndf_mult = 1 + ndf_mult_prev = 1 + for n in range(1, n_layers): # gradually increase the number of filters + ndf_mult_prev = ndf_mult + ndf_mult = min(2 ** n, 8) + layers += [ + nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=2, padding=1, bias=False), + nn.BatchNorm2d(ndf * ndf_mult), + nn.LeakyReLU(0.2, True) + ] + + ndf_mult_prev = ndf_mult + ndf_mult = min(2 ** n_layers, 8) + + layers += [ + nn.Conv2d(ndf * ndf_mult_prev, ndf * ndf_mult, kernel_size=4, stride=1, padding=1, bias=False), + nn.BatchNorm2d(ndf * ndf_mult), + nn.LeakyReLU(0.2, True) + ] + + layers += [ + nn.Conv2d(ndf * ndf_mult, 1, kernel_size=4, stride=1, padding=1)] # output 1 channel prediction map + self.main = nn.Sequential(*layers) + + if model_path is not None: + chkpt = torch.load(model_path, map_location='cpu') + if 'params_d' in chkpt: + self.load_state_dict(torch.load(model_path, map_location='cpu')['params_d']) + elif 'params' in chkpt: + self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) + else: + raise ValueError('Wrong params!') + + def forward(self, x): + return self.main(x) \ No newline at end of file diff --git a/modules/codeformer_model.py b/modules/codeformer_model.py new file mode 100644 index 0000000000000000000000000000000000000000..fc8fbc3e947f64a7f23f0da7243d6e0ad7cbeb79 --- /dev/null +++ b/modules/codeformer_model.py @@ -0,0 +1,143 @@ +import os +import sys +import traceback + +import cv2 +import torch + +import modules.face_restoration +import modules.shared +from modules import shared, devices, modelloader +from modules.paths import models_path + +# codeformer people made a choice to include modified basicsr library to their project which makes +# it utterly impossible to use it alongside with other libraries that also use basicsr, like GFPGAN. +# I am making a choice to include some files from codeformer to work around this issue. +model_dir = "Codeformer" +model_path = os.path.join(models_path, model_dir) +model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth' + +have_codeformer = False +codeformer = None + + +def setup_model(dirname): + global model_path + if not os.path.exists(model_path): + os.makedirs(model_path) + + path = modules.paths.paths.get("CodeFormer", None) + if path is None: + return + + try: + from torchvision.transforms.functional import normalize + from modules.codeformer.codeformer_arch import CodeFormer + from basicsr.utils.download_util import load_file_from_url + from basicsr.utils import imwrite, img2tensor, tensor2img + from facelib.utils.face_restoration_helper import FaceRestoreHelper + from facelib.detection.retinaface import retinaface + from modules.shared import cmd_opts + + net_class = CodeFormer + + class FaceRestorerCodeFormer(modules.face_restoration.FaceRestoration): + def name(self): + return "CodeFormer" + + def __init__(self, dirname): + self.net = None + self.face_helper = None + self.cmd_dir = dirname + + def create_models(self): + + if self.net is not None and self.face_helper is not None: + self.net.to(devices.device_codeformer) + return self.net, self.face_helper + model_paths = modelloader.load_models(model_path, model_url, self.cmd_dir, download_name='codeformer-v0.1.0.pth') + if len(model_paths) != 0: + ckpt_path = model_paths[0] + else: + print("Unable to load codeformer model.") + return None, None + net = net_class(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(devices.device_codeformer) + checkpoint = torch.load(ckpt_path)['params_ema'] + net.load_state_dict(checkpoint) + net.eval() + + if hasattr(retinaface, 'device'): + retinaface.device = devices.device_codeformer + face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer) + + self.net = net + self.face_helper = face_helper + + return net, face_helper + + def send_model_to(self, device): + self.net.to(device) + self.face_helper.face_det.to(device) + self.face_helper.face_parse.to(device) + + def restore(self, np_image, w=None): + np_image = np_image[:, :, ::-1] + + original_resolution = np_image.shape[0:2] + + self.create_models() + if self.net is None or self.face_helper is None: + return np_image + + self.send_model_to(devices.device_codeformer) + + self.face_helper.clean_all() + self.face_helper.read_image(np_image) + self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) + self.face_helper.align_warp_face() + + for idx, cropped_face in enumerate(self.face_helper.cropped_faces): + cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) + normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) + cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) + + try: + with torch.no_grad(): + output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0] + restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) + del output + torch.cuda.empty_cache() + except Exception as error: + print(f'\tFailed inference for CodeFormer: {error}', file=sys.stderr) + restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) + + restored_face = restored_face.astype('uint8') + self.face_helper.add_restored_face(restored_face) + + self.face_helper.get_inverse_affine(None) + + restored_img = self.face_helper.paste_faces_to_input_image() + restored_img = restored_img[:, :, ::-1] + + if original_resolution != restored_img.shape[0:2]: + restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR) + + self.face_helper.clean_all() + + if shared.opts.face_restoration_unload: + self.send_model_to(devices.cpu) + + return restored_img + + global have_codeformer + have_codeformer = True + + global codeformer + codeformer = FaceRestorerCodeFormer(dirname) + shared.face_restorers.append(codeformer) + + except Exception: + print("Error setting up CodeFormer:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + + # sys.path = stored_sys_path diff --git a/modules/deepbooru.py b/modules/deepbooru.py new file mode 100644 index 0000000000000000000000000000000000000000..122fce7f569dbd28f9c6d83af874bb3efed34a5e --- /dev/null +++ b/modules/deepbooru.py @@ -0,0 +1,99 @@ +import os +import re + +import torch +from PIL import Image +import numpy as np + +from modules import modelloader, paths, deepbooru_model, devices, images, shared + +re_special = re.compile(r'([\\()])') + + +class DeepDanbooru: + def __init__(self): + self.model = None + + def load(self): + if self.model is not None: + return + + files = modelloader.load_models( + model_path=os.path.join(paths.models_path, "torch_deepdanbooru"), + model_url='https://github.com/AUTOMATIC1111/TorchDeepDanbooru/releases/download/v1/model-resnet_custom_v3.pt', + ext_filter=[".pt"], + download_name='model-resnet_custom_v3.pt', + ) + + self.model = deepbooru_model.DeepDanbooruModel() + self.model.load_state_dict(torch.load(files[0], map_location="cpu")) + + self.model.eval() + self.model.to(devices.cpu, devices.dtype) + + def start(self): + self.load() + self.model.to(devices.device) + + def stop(self): + if not shared.opts.interrogate_keep_models_in_memory: + self.model.to(devices.cpu) + devices.torch_gc() + + def tag(self, pil_image): + self.start() + res = self.tag_multi(pil_image) + self.stop() + + return res + + def tag_multi(self, pil_image, force_disable_ranks=False): + threshold = shared.opts.interrogate_deepbooru_score_threshold + use_spaces = shared.opts.deepbooru_use_spaces + use_escape = shared.opts.deepbooru_escape + alpha_sort = shared.opts.deepbooru_sort_alpha + include_ranks = shared.opts.interrogate_return_ranks and not force_disable_ranks + + pic = images.resize_image(2, pil_image.convert("RGB"), 512, 512) + a = np.expand_dims(np.array(pic, dtype=np.float32), 0) / 255 + + with torch.no_grad(), devices.autocast(): + x = torch.from_numpy(a).to(devices.device) + y = self.model(x)[0].detach().cpu().numpy() + + probability_dict = {} + + for tag, probability in zip(self.model.tags, y): + if probability < threshold: + continue + + if tag.startswith("rating:"): + continue + + probability_dict[tag] = probability + + if alpha_sort: + tags = sorted(probability_dict) + else: + tags = [tag for tag, _ in sorted(probability_dict.items(), key=lambda x: -x[1])] + + res = [] + + filtertags = set([x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")]) + + for tag in [x for x in tags if x not in filtertags]: + probability = probability_dict[tag] + tag_outformat = tag + if use_spaces: + tag_outformat = tag_outformat.replace('_', ' ') + if use_escape: + tag_outformat = re.sub(re_special, r'\\\1', tag_outformat) + if include_ranks: + tag_outformat = f"({tag_outformat}:{probability:.3f})" + + res.append(tag_outformat) + + return ", ".join(res) + + +model = DeepDanbooru() diff --git a/modules/deepbooru_model.py b/modules/deepbooru_model.py new file mode 100644 index 0000000000000000000000000000000000000000..7a53884624e96284c35214ce02b8a2891d92c3e8 --- /dev/null +++ b/modules/deepbooru_model.py @@ -0,0 +1,678 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + +from modules import devices + +# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more + + +class DeepDanbooruModel(nn.Module): + def __init__(self): + super(DeepDanbooruModel, self).__init__() + + self.tags = [] + + self.n_Conv_0 = nn.Conv2d(kernel_size=(7, 7), in_channels=3, out_channels=64, stride=(2, 2)) + self.n_MaxPool_0 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2)) + self.n_Conv_1 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256) + self.n_Conv_2 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=64) + self.n_Conv_3 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64) + self.n_Conv_4 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256) + self.n_Conv_5 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64) + self.n_Conv_6 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64) + self.n_Conv_7 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256) + self.n_Conv_8 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64) + self.n_Conv_9 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64) + self.n_Conv_10 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256) + self.n_Conv_11 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=512, stride=(2, 2)) + self.n_Conv_12 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=128) + self.n_Conv_13 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128, stride=(2, 2)) + self.n_Conv_14 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512) + self.n_Conv_15 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128) + self.n_Conv_16 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128) + self.n_Conv_17 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512) + self.n_Conv_18 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128) + self.n_Conv_19 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128) + self.n_Conv_20 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512) + self.n_Conv_21 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128) + self.n_Conv_22 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128) + self.n_Conv_23 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512) + self.n_Conv_24 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128) + self.n_Conv_25 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128) + self.n_Conv_26 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512) + self.n_Conv_27 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128) + self.n_Conv_28 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128) + self.n_Conv_29 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512) + self.n_Conv_30 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128) + self.n_Conv_31 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128) + self.n_Conv_32 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512) + self.n_Conv_33 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128) + self.n_Conv_34 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128) + self.n_Conv_35 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512) + self.n_Conv_36 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=1024, stride=(2, 2)) + self.n_Conv_37 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=256) + self.n_Conv_38 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2)) + self.n_Conv_39 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_40 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_41 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_42 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_43 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_44 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_45 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_46 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_47 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_48 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_49 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_50 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_51 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_52 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_53 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_54 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_55 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_56 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_57 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_58 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_59 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_60 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_61 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_62 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_63 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_64 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_65 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_66 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_67 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_68 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_69 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_70 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_71 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_72 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_73 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_74 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_75 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_76 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_77 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_78 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_79 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_80 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_81 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_82 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_83 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_84 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_85 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_86 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_87 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_88 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_89 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_90 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_91 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_92 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_93 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_94 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_95 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_96 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_97 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_98 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2)) + self.n_Conv_99 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_100 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=1024, stride=(2, 2)) + self.n_Conv_101 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_102 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_103 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_104 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_105 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_106 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_107 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_108 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_109 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_110 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_111 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_112 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_113 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_114 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_115 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_116 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_117 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_118 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_119 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_120 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_121 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_122 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_123 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_124 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_125 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_126 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_127 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_128 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_129 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_130 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_131 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_132 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_133 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_134 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_135 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_136 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_137 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_138 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_139 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_140 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_141 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_142 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_143 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_144 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_145 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_146 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_147 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_148 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_149 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_150 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_151 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_152 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_153 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_154 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_155 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256) + self.n_Conv_156 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256) + self.n_Conv_157 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024) + self.n_Conv_158 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=2048, stride=(2, 2)) + self.n_Conv_159 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=512) + self.n_Conv_160 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512, stride=(2, 2)) + self.n_Conv_161 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048) + self.n_Conv_162 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512) + self.n_Conv_163 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512) + self.n_Conv_164 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048) + self.n_Conv_165 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512) + self.n_Conv_166 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512) + self.n_Conv_167 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048) + self.n_Conv_168 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=4096, stride=(2, 2)) + self.n_Conv_169 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=1024) + self.n_Conv_170 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024, stride=(2, 2)) + self.n_Conv_171 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096) + self.n_Conv_172 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024) + self.n_Conv_173 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024) + self.n_Conv_174 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096) + self.n_Conv_175 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024) + self.n_Conv_176 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024) + self.n_Conv_177 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096) + self.n_Conv_178 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=9176, bias=False) + + def forward(self, *inputs): + t_358, = inputs + t_359 = t_358.permute(*[0, 3, 1, 2]) + t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0) + t_360 = self.n_Conv_0(t_359_padded.to(self.n_Conv_0.bias.dtype) if devices.unet_needs_upcast else t_359_padded) + t_361 = F.relu(t_360) + t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf')) + t_362 = self.n_MaxPool_0(t_361) + t_363 = self.n_Conv_1(t_362) + t_364 = self.n_Conv_2(t_362) + t_365 = F.relu(t_364) + t_365_padded = F.pad(t_365, [1, 1, 1, 1], value=0) + t_366 = self.n_Conv_3(t_365_padded) + t_367 = F.relu(t_366) + t_368 = self.n_Conv_4(t_367) + t_369 = torch.add(t_368, t_363) + t_370 = F.relu(t_369) + t_371 = self.n_Conv_5(t_370) + t_372 = F.relu(t_371) + t_372_padded = F.pad(t_372, [1, 1, 1, 1], value=0) + t_373 = self.n_Conv_6(t_372_padded) + t_374 = F.relu(t_373) + t_375 = self.n_Conv_7(t_374) + t_376 = torch.add(t_375, t_370) + t_377 = F.relu(t_376) + t_378 = self.n_Conv_8(t_377) + t_379 = F.relu(t_378) + t_379_padded = F.pad(t_379, [1, 1, 1, 1], value=0) + t_380 = self.n_Conv_9(t_379_padded) + t_381 = F.relu(t_380) + t_382 = self.n_Conv_10(t_381) + t_383 = torch.add(t_382, t_377) + t_384 = F.relu(t_383) + t_385 = self.n_Conv_11(t_384) + t_386 = self.n_Conv_12(t_384) + t_387 = F.relu(t_386) + t_387_padded = F.pad(t_387, [0, 1, 0, 1], value=0) + t_388 = self.n_Conv_13(t_387_padded) + t_389 = F.relu(t_388) + t_390 = self.n_Conv_14(t_389) + t_391 = torch.add(t_390, t_385) + t_392 = F.relu(t_391) + t_393 = self.n_Conv_15(t_392) + t_394 = F.relu(t_393) + t_394_padded = F.pad(t_394, [1, 1, 1, 1], value=0) + t_395 = self.n_Conv_16(t_394_padded) + t_396 = F.relu(t_395) + t_397 = self.n_Conv_17(t_396) + t_398 = torch.add(t_397, t_392) + t_399 = F.relu(t_398) + t_400 = self.n_Conv_18(t_399) + t_401 = F.relu(t_400) + t_401_padded = F.pad(t_401, [1, 1, 1, 1], value=0) + t_402 = self.n_Conv_19(t_401_padded) + t_403 = F.relu(t_402) + t_404 = self.n_Conv_20(t_403) + t_405 = torch.add(t_404, t_399) + t_406 = F.relu(t_405) + t_407 = self.n_Conv_21(t_406) + t_408 = F.relu(t_407) + t_408_padded = F.pad(t_408, [1, 1, 1, 1], value=0) + t_409 = self.n_Conv_22(t_408_padded) + t_410 = F.relu(t_409) + t_411 = self.n_Conv_23(t_410) + t_412 = torch.add(t_411, t_406) + t_413 = F.relu(t_412) + t_414 = self.n_Conv_24(t_413) + t_415 = F.relu(t_414) + t_415_padded = F.pad(t_415, [1, 1, 1, 1], value=0) + t_416 = self.n_Conv_25(t_415_padded) + t_417 = F.relu(t_416) + t_418 = self.n_Conv_26(t_417) + t_419 = torch.add(t_418, t_413) + t_420 = F.relu(t_419) + t_421 = self.n_Conv_27(t_420) + t_422 = F.relu(t_421) + t_422_padded = F.pad(t_422, [1, 1, 1, 1], value=0) + t_423 = self.n_Conv_28(t_422_padded) + t_424 = F.relu(t_423) + t_425 = self.n_Conv_29(t_424) + t_426 = torch.add(t_425, t_420) + t_427 = F.relu(t_426) + t_428 = self.n_Conv_30(t_427) + t_429 = F.relu(t_428) + t_429_padded = F.pad(t_429, [1, 1, 1, 1], value=0) + t_430 = self.n_Conv_31(t_429_padded) + t_431 = F.relu(t_430) + t_432 = self.n_Conv_32(t_431) + t_433 = torch.add(t_432, t_427) + t_434 = F.relu(t_433) + t_435 = self.n_Conv_33(t_434) + t_436 = F.relu(t_435) + t_436_padded = F.pad(t_436, [1, 1, 1, 1], value=0) + t_437 = self.n_Conv_34(t_436_padded) + t_438 = F.relu(t_437) + t_439 = self.n_Conv_35(t_438) + t_440 = torch.add(t_439, t_434) + t_441 = F.relu(t_440) + t_442 = self.n_Conv_36(t_441) + t_443 = self.n_Conv_37(t_441) + t_444 = F.relu(t_443) + t_444_padded = F.pad(t_444, [0, 1, 0, 1], value=0) + t_445 = self.n_Conv_38(t_444_padded) + t_446 = F.relu(t_445) + t_447 = self.n_Conv_39(t_446) + t_448 = torch.add(t_447, t_442) + t_449 = F.relu(t_448) + t_450 = self.n_Conv_40(t_449) + t_451 = F.relu(t_450) + t_451_padded = F.pad(t_451, [1, 1, 1, 1], value=0) + t_452 = self.n_Conv_41(t_451_padded) + t_453 = F.relu(t_452) + t_454 = self.n_Conv_42(t_453) + t_455 = torch.add(t_454, t_449) + t_456 = F.relu(t_455) + t_457 = self.n_Conv_43(t_456) + t_458 = F.relu(t_457) + t_458_padded = F.pad(t_458, [1, 1, 1, 1], value=0) + t_459 = self.n_Conv_44(t_458_padded) + t_460 = F.relu(t_459) + t_461 = self.n_Conv_45(t_460) + t_462 = torch.add(t_461, t_456) + t_463 = F.relu(t_462) + t_464 = self.n_Conv_46(t_463) + t_465 = F.relu(t_464) + t_465_padded = F.pad(t_465, [1, 1, 1, 1], value=0) + t_466 = self.n_Conv_47(t_465_padded) + t_467 = F.relu(t_466) + t_468 = self.n_Conv_48(t_467) + t_469 = torch.add(t_468, t_463) + t_470 = F.relu(t_469) + t_471 = self.n_Conv_49(t_470) + t_472 = F.relu(t_471) + t_472_padded = F.pad(t_472, [1, 1, 1, 1], value=0) + t_473 = self.n_Conv_50(t_472_padded) + t_474 = F.relu(t_473) + t_475 = self.n_Conv_51(t_474) + t_476 = torch.add(t_475, t_470) + t_477 = F.relu(t_476) + t_478 = self.n_Conv_52(t_477) + t_479 = F.relu(t_478) + t_479_padded = F.pad(t_479, [1, 1, 1, 1], value=0) + t_480 = self.n_Conv_53(t_479_padded) + t_481 = F.relu(t_480) + t_482 = self.n_Conv_54(t_481) + t_483 = torch.add(t_482, t_477) + t_484 = F.relu(t_483) + t_485 = self.n_Conv_55(t_484) + t_486 = F.relu(t_485) + t_486_padded = F.pad(t_486, [1, 1, 1, 1], value=0) + t_487 = self.n_Conv_56(t_486_padded) + t_488 = F.relu(t_487) + t_489 = self.n_Conv_57(t_488) + t_490 = torch.add(t_489, t_484) + t_491 = F.relu(t_490) + t_492 = self.n_Conv_58(t_491) + t_493 = F.relu(t_492) + t_493_padded = F.pad(t_493, [1, 1, 1, 1], value=0) + t_494 = self.n_Conv_59(t_493_padded) + t_495 = F.relu(t_494) + t_496 = self.n_Conv_60(t_495) + t_497 = torch.add(t_496, t_491) + t_498 = F.relu(t_497) + t_499 = self.n_Conv_61(t_498) + t_500 = F.relu(t_499) + t_500_padded = F.pad(t_500, [1, 1, 1, 1], value=0) + t_501 = self.n_Conv_62(t_500_padded) + t_502 = F.relu(t_501) + t_503 = self.n_Conv_63(t_502) + t_504 = torch.add(t_503, t_498) + t_505 = F.relu(t_504) + t_506 = self.n_Conv_64(t_505) + t_507 = F.relu(t_506) + t_507_padded = F.pad(t_507, [1, 1, 1, 1], value=0) + t_508 = self.n_Conv_65(t_507_padded) + t_509 = F.relu(t_508) + t_510 = self.n_Conv_66(t_509) + t_511 = torch.add(t_510, t_505) + t_512 = F.relu(t_511) + t_513 = self.n_Conv_67(t_512) + t_514 = F.relu(t_513) + t_514_padded = F.pad(t_514, [1, 1, 1, 1], value=0) + t_515 = self.n_Conv_68(t_514_padded) + t_516 = F.relu(t_515) + t_517 = self.n_Conv_69(t_516) + t_518 = torch.add(t_517, t_512) + t_519 = F.relu(t_518) + t_520 = self.n_Conv_70(t_519) + t_521 = F.relu(t_520) + t_521_padded = F.pad(t_521, [1, 1, 1, 1], value=0) + t_522 = self.n_Conv_71(t_521_padded) + t_523 = F.relu(t_522) + t_524 = self.n_Conv_72(t_523) + t_525 = torch.add(t_524, t_519) + t_526 = F.relu(t_525) + t_527 = self.n_Conv_73(t_526) + t_528 = F.relu(t_527) + t_528_padded = F.pad(t_528, [1, 1, 1, 1], value=0) + t_529 = self.n_Conv_74(t_528_padded) + t_530 = F.relu(t_529) + t_531 = self.n_Conv_75(t_530) + t_532 = torch.add(t_531, t_526) + t_533 = F.relu(t_532) + t_534 = self.n_Conv_76(t_533) + t_535 = F.relu(t_534) + t_535_padded = F.pad(t_535, [1, 1, 1, 1], value=0) + t_536 = self.n_Conv_77(t_535_padded) + t_537 = F.relu(t_536) + t_538 = self.n_Conv_78(t_537) + t_539 = torch.add(t_538, t_533) + t_540 = F.relu(t_539) + t_541 = self.n_Conv_79(t_540) + t_542 = F.relu(t_541) + t_542_padded = F.pad(t_542, [1, 1, 1, 1], value=0) + t_543 = self.n_Conv_80(t_542_padded) + t_544 = F.relu(t_543) + t_545 = self.n_Conv_81(t_544) + t_546 = torch.add(t_545, t_540) + t_547 = F.relu(t_546) + t_548 = self.n_Conv_82(t_547) + t_549 = F.relu(t_548) + t_549_padded = F.pad(t_549, [1, 1, 1, 1], value=0) + t_550 = self.n_Conv_83(t_549_padded) + t_551 = F.relu(t_550) + t_552 = self.n_Conv_84(t_551) + t_553 = torch.add(t_552, t_547) + t_554 = F.relu(t_553) + t_555 = self.n_Conv_85(t_554) + t_556 = F.relu(t_555) + t_556_padded = F.pad(t_556, [1, 1, 1, 1], value=0) + t_557 = self.n_Conv_86(t_556_padded) + t_558 = F.relu(t_557) + t_559 = self.n_Conv_87(t_558) + t_560 = torch.add(t_559, t_554) + t_561 = F.relu(t_560) + t_562 = self.n_Conv_88(t_561) + t_563 = F.relu(t_562) + t_563_padded = F.pad(t_563, [1, 1, 1, 1], value=0) + t_564 = self.n_Conv_89(t_563_padded) + t_565 = F.relu(t_564) + t_566 = self.n_Conv_90(t_565) + t_567 = torch.add(t_566, t_561) + t_568 = F.relu(t_567) + t_569 = self.n_Conv_91(t_568) + t_570 = F.relu(t_569) + t_570_padded = F.pad(t_570, [1, 1, 1, 1], value=0) + t_571 = self.n_Conv_92(t_570_padded) + t_572 = F.relu(t_571) + t_573 = self.n_Conv_93(t_572) + t_574 = torch.add(t_573, t_568) + t_575 = F.relu(t_574) + t_576 = self.n_Conv_94(t_575) + t_577 = F.relu(t_576) + t_577_padded = F.pad(t_577, [1, 1, 1, 1], value=0) + t_578 = self.n_Conv_95(t_577_padded) + t_579 = F.relu(t_578) + t_580 = self.n_Conv_96(t_579) + t_581 = torch.add(t_580, t_575) + t_582 = F.relu(t_581) + t_583 = self.n_Conv_97(t_582) + t_584 = F.relu(t_583) + t_584_padded = F.pad(t_584, [0, 1, 0, 1], value=0) + t_585 = self.n_Conv_98(t_584_padded) + t_586 = F.relu(t_585) + t_587 = self.n_Conv_99(t_586) + t_588 = self.n_Conv_100(t_582) + t_589 = torch.add(t_587, t_588) + t_590 = F.relu(t_589) + t_591 = self.n_Conv_101(t_590) + t_592 = F.relu(t_591) + t_592_padded = F.pad(t_592, [1, 1, 1, 1], value=0) + t_593 = self.n_Conv_102(t_592_padded) + t_594 = F.relu(t_593) + t_595 = self.n_Conv_103(t_594) + t_596 = torch.add(t_595, t_590) + t_597 = F.relu(t_596) + t_598 = self.n_Conv_104(t_597) + t_599 = F.relu(t_598) + t_599_padded = F.pad(t_599, [1, 1, 1, 1], value=0) + t_600 = self.n_Conv_105(t_599_padded) + t_601 = F.relu(t_600) + t_602 = self.n_Conv_106(t_601) + t_603 = torch.add(t_602, t_597) + t_604 = F.relu(t_603) + t_605 = self.n_Conv_107(t_604) + t_606 = F.relu(t_605) + t_606_padded = F.pad(t_606, [1, 1, 1, 1], value=0) + t_607 = self.n_Conv_108(t_606_padded) + t_608 = F.relu(t_607) + t_609 = self.n_Conv_109(t_608) + t_610 = torch.add(t_609, t_604) + t_611 = F.relu(t_610) + t_612 = self.n_Conv_110(t_611) + t_613 = F.relu(t_612) + t_613_padded = F.pad(t_613, [1, 1, 1, 1], value=0) + t_614 = self.n_Conv_111(t_613_padded) + t_615 = F.relu(t_614) + t_616 = self.n_Conv_112(t_615) + t_617 = torch.add(t_616, t_611) + t_618 = F.relu(t_617) + t_619 = self.n_Conv_113(t_618) + t_620 = F.relu(t_619) + t_620_padded = F.pad(t_620, [1, 1, 1, 1], value=0) + t_621 = self.n_Conv_114(t_620_padded) + t_622 = F.relu(t_621) + t_623 = self.n_Conv_115(t_622) + t_624 = torch.add(t_623, t_618) + t_625 = F.relu(t_624) + t_626 = self.n_Conv_116(t_625) + t_627 = F.relu(t_626) + t_627_padded = F.pad(t_627, [1, 1, 1, 1], value=0) + t_628 = self.n_Conv_117(t_627_padded) + t_629 = F.relu(t_628) + t_630 = self.n_Conv_118(t_629) + t_631 = torch.add(t_630, t_625) + t_632 = F.relu(t_631) + t_633 = self.n_Conv_119(t_632) + t_634 = F.relu(t_633) + t_634_padded = F.pad(t_634, [1, 1, 1, 1], value=0) + t_635 = self.n_Conv_120(t_634_padded) + t_636 = F.relu(t_635) + t_637 = self.n_Conv_121(t_636) + t_638 = torch.add(t_637, t_632) + t_639 = F.relu(t_638) + t_640 = self.n_Conv_122(t_639) + t_641 = F.relu(t_640) + t_641_padded = F.pad(t_641, [1, 1, 1, 1], value=0) + t_642 = self.n_Conv_123(t_641_padded) + t_643 = F.relu(t_642) + t_644 = self.n_Conv_124(t_643) + t_645 = torch.add(t_644, t_639) + t_646 = F.relu(t_645) + t_647 = self.n_Conv_125(t_646) + t_648 = F.relu(t_647) + t_648_padded = F.pad(t_648, [1, 1, 1, 1], value=0) + t_649 = self.n_Conv_126(t_648_padded) + t_650 = F.relu(t_649) + t_651 = self.n_Conv_127(t_650) + t_652 = torch.add(t_651, t_646) + t_653 = F.relu(t_652) + t_654 = self.n_Conv_128(t_653) + t_655 = F.relu(t_654) + t_655_padded = F.pad(t_655, [1, 1, 1, 1], value=0) + t_656 = self.n_Conv_129(t_655_padded) + t_657 = F.relu(t_656) + t_658 = self.n_Conv_130(t_657) + t_659 = torch.add(t_658, t_653) + t_660 = F.relu(t_659) + t_661 = self.n_Conv_131(t_660) + t_662 = F.relu(t_661) + t_662_padded = F.pad(t_662, [1, 1, 1, 1], value=0) + t_663 = self.n_Conv_132(t_662_padded) + t_664 = F.relu(t_663) + t_665 = self.n_Conv_133(t_664) + t_666 = torch.add(t_665, t_660) + t_667 = F.relu(t_666) + t_668 = self.n_Conv_134(t_667) + t_669 = F.relu(t_668) + t_669_padded = F.pad(t_669, [1, 1, 1, 1], value=0) + t_670 = self.n_Conv_135(t_669_padded) + t_671 = F.relu(t_670) + t_672 = self.n_Conv_136(t_671) + t_673 = torch.add(t_672, t_667) + t_674 = F.relu(t_673) + t_675 = self.n_Conv_137(t_674) + t_676 = F.relu(t_675) + t_676_padded = F.pad(t_676, [1, 1, 1, 1], value=0) + t_677 = self.n_Conv_138(t_676_padded) + t_678 = F.relu(t_677) + t_679 = self.n_Conv_139(t_678) + t_680 = torch.add(t_679, t_674) + t_681 = F.relu(t_680) + t_682 = self.n_Conv_140(t_681) + t_683 = F.relu(t_682) + t_683_padded = F.pad(t_683, [1, 1, 1, 1], value=0) + t_684 = self.n_Conv_141(t_683_padded) + t_685 = F.relu(t_684) + t_686 = self.n_Conv_142(t_685) + t_687 = torch.add(t_686, t_681) + t_688 = F.relu(t_687) + t_689 = self.n_Conv_143(t_688) + t_690 = F.relu(t_689) + t_690_padded = F.pad(t_690, [1, 1, 1, 1], value=0) + t_691 = self.n_Conv_144(t_690_padded) + t_692 = F.relu(t_691) + t_693 = self.n_Conv_145(t_692) + t_694 = torch.add(t_693, t_688) + t_695 = F.relu(t_694) + t_696 = self.n_Conv_146(t_695) + t_697 = F.relu(t_696) + t_697_padded = F.pad(t_697, [1, 1, 1, 1], value=0) + t_698 = self.n_Conv_147(t_697_padded) + t_699 = F.relu(t_698) + t_700 = self.n_Conv_148(t_699) + t_701 = torch.add(t_700, t_695) + t_702 = F.relu(t_701) + t_703 = self.n_Conv_149(t_702) + t_704 = F.relu(t_703) + t_704_padded = F.pad(t_704, [1, 1, 1, 1], value=0) + t_705 = self.n_Conv_150(t_704_padded) + t_706 = F.relu(t_705) + t_707 = self.n_Conv_151(t_706) + t_708 = torch.add(t_707, t_702) + t_709 = F.relu(t_708) + t_710 = self.n_Conv_152(t_709) + t_711 = F.relu(t_710) + t_711_padded = F.pad(t_711, [1, 1, 1, 1], value=0) + t_712 = self.n_Conv_153(t_711_padded) + t_713 = F.relu(t_712) + t_714 = self.n_Conv_154(t_713) + t_715 = torch.add(t_714, t_709) + t_716 = F.relu(t_715) + t_717 = self.n_Conv_155(t_716) + t_718 = F.relu(t_717) + t_718_padded = F.pad(t_718, [1, 1, 1, 1], value=0) + t_719 = self.n_Conv_156(t_718_padded) + t_720 = F.relu(t_719) + t_721 = self.n_Conv_157(t_720) + t_722 = torch.add(t_721, t_716) + t_723 = F.relu(t_722) + t_724 = self.n_Conv_158(t_723) + t_725 = self.n_Conv_159(t_723) + t_726 = F.relu(t_725) + t_726_padded = F.pad(t_726, [0, 1, 0, 1], value=0) + t_727 = self.n_Conv_160(t_726_padded) + t_728 = F.relu(t_727) + t_729 = self.n_Conv_161(t_728) + t_730 = torch.add(t_729, t_724) + t_731 = F.relu(t_730) + t_732 = self.n_Conv_162(t_731) + t_733 = F.relu(t_732) + t_733_padded = F.pad(t_733, [1, 1, 1, 1], value=0) + t_734 = self.n_Conv_163(t_733_padded) + t_735 = F.relu(t_734) + t_736 = self.n_Conv_164(t_735) + t_737 = torch.add(t_736, t_731) + t_738 = F.relu(t_737) + t_739 = self.n_Conv_165(t_738) + t_740 = F.relu(t_739) + t_740_padded = F.pad(t_740, [1, 1, 1, 1], value=0) + t_741 = self.n_Conv_166(t_740_padded) + t_742 = F.relu(t_741) + t_743 = self.n_Conv_167(t_742) + t_744 = torch.add(t_743, t_738) + t_745 = F.relu(t_744) + t_746 = self.n_Conv_168(t_745) + t_747 = self.n_Conv_169(t_745) + t_748 = F.relu(t_747) + t_748_padded = F.pad(t_748, [0, 1, 0, 1], value=0) + t_749 = self.n_Conv_170(t_748_padded) + t_750 = F.relu(t_749) + t_751 = self.n_Conv_171(t_750) + t_752 = torch.add(t_751, t_746) + t_753 = F.relu(t_752) + t_754 = self.n_Conv_172(t_753) + t_755 = F.relu(t_754) + t_755_padded = F.pad(t_755, [1, 1, 1, 1], value=0) + t_756 = self.n_Conv_173(t_755_padded) + t_757 = F.relu(t_756) + t_758 = self.n_Conv_174(t_757) + t_759 = torch.add(t_758, t_753) + t_760 = F.relu(t_759) + t_761 = self.n_Conv_175(t_760) + t_762 = F.relu(t_761) + t_762_padded = F.pad(t_762, [1, 1, 1, 1], value=0) + t_763 = self.n_Conv_176(t_762_padded) + t_764 = F.relu(t_763) + t_765 = self.n_Conv_177(t_764) + t_766 = torch.add(t_765, t_760) + t_767 = F.relu(t_766) + t_768 = self.n_Conv_178(t_767) + t_769 = F.avg_pool2d(t_768, kernel_size=t_768.shape[-2:]) + t_770 = torch.squeeze(t_769, 3) + t_770 = torch.squeeze(t_770, 2) + t_771 = torch.sigmoid(t_770) + return t_771 + + def load_state_dict(self, state_dict, **kwargs): + self.tags = state_dict.get('tags', []) + + super(DeepDanbooruModel, self).load_state_dict({k: v for k, v in state_dict.items() if k != 'tags'}) + diff --git a/modules/devices.py b/modules/devices.py new file mode 100644 index 0000000000000000000000000000000000000000..52c3e7cd773f9c89857dfce14b37d63cb6329fac --- /dev/null +++ b/modules/devices.py @@ -0,0 +1,152 @@ +import sys +import contextlib +import torch +from modules import errors + +if sys.platform == "darwin": + from modules import mac_specific + + +def has_mps() -> bool: + if sys.platform != "darwin": + return False + else: + return mac_specific.has_mps + +def extract_device_id(args, name): + for x in range(len(args)): + if name in args[x]: + return args[x + 1] + + return None + + +def get_cuda_device_string(): + from modules import shared + + if shared.cmd_opts.device_id is not None: + return f"cuda:{shared.cmd_opts.device_id}" + + return "cuda" + + +def get_optimal_device_name(): + if torch.cuda.is_available(): + return get_cuda_device_string() + + if has_mps(): + return "mps" + + return "cpu" + + +def get_optimal_device(): + return torch.device(get_optimal_device_name()) + + +def get_device_for(task): + from modules import shared + + if task in shared.cmd_opts.use_cpu: + return cpu + + return get_optimal_device() + + +def torch_gc(): + if torch.cuda.is_available(): + with torch.cuda.device(get_cuda_device_string()): + torch.cuda.empty_cache() + torch.cuda.ipc_collect() + + +def enable_tf32(): + if torch.cuda.is_available(): + + # enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't + # see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407 + if any([torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())]): + torch.backends.cudnn.benchmark = True + + torch.backends.cuda.matmul.allow_tf32 = True + torch.backends.cudnn.allow_tf32 = True + + + +errors.run(enable_tf32, "Enabling TF32") + +cpu = torch.device("cpu") +device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None +dtype = torch.float16 +dtype_vae = torch.float16 +dtype_unet = torch.float16 +unet_needs_upcast = False + + +def cond_cast_unet(input): + return input.to(dtype_unet) if unet_needs_upcast else input + + +def cond_cast_float(input): + return input.float() if unet_needs_upcast else input + + +def randn(seed, shape): + torch.manual_seed(seed) + if device.type == 'mps': + return torch.randn(shape, device=cpu).to(device) + return torch.randn(shape, device=device) + + +def randn_without_seed(shape): + if device.type == 'mps': + return torch.randn(shape, device=cpu).to(device) + return torch.randn(shape, device=device) + + +def autocast(disable=False): + from modules import shared + + if disable: + return contextlib.nullcontext() + + if dtype == torch.float32 or shared.cmd_opts.precision == "full": + return contextlib.nullcontext() + + return torch.autocast("cuda") + + +def without_autocast(disable=False): + return torch.autocast("cuda", enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext() + + +class NansException(Exception): + pass + + +def test_for_nans(x, where): + from modules import shared + + if shared.cmd_opts.disable_nan_check: + return + + if not torch.all(torch.isnan(x)).item(): + return + + if where == "unet": + message = "A tensor with all NaNs was produced in Unet." + + if not shared.cmd_opts.no_half: + message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try setting the \"Upcast cross attention layer to float32\" option in Settings > Stable Diffusion or using the --no-half commandline argument to fix this." + + elif where == "vae": + message = "A tensor with all NaNs was produced in VAE." + + if not shared.cmd_opts.no_half and not shared.cmd_opts.no_half_vae: + message += " This could be because there's not enough precision to represent the picture. Try adding --no-half-vae commandline argument to fix this." + else: + message = "A tensor with all NaNs was produced." + + message += " Use --disable-nan-check commandline argument to disable this check." + + raise NansException(message) diff --git a/modules/errors.py b/modules/errors.py new file mode 100644 index 0000000000000000000000000000000000000000..72c9c44497221eb814b402aa5859a3e6aaeaac00 --- /dev/null +++ b/modules/errors.py @@ -0,0 +1,43 @@ +import sys +import traceback + + +def print_error_explanation(message): + lines = message.strip().split("\n") + max_len = max([len(x) for x in lines]) + + print('=' * max_len, file=sys.stderr) + for line in lines: + print(line, file=sys.stderr) + print('=' * max_len, file=sys.stderr) + + +def display(e: Exception, task): + print(f"{task or 'error'}: {type(e).__name__}", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + + message = str(e) + if "copying a param with shape torch.Size([640, 1024]) from checkpoint, the shape in current model is torch.Size([640, 768])" in message: + print_error_explanation(""" +The most likely cause of this is you are trying to load Stable Diffusion 2.0 model without specifying its config file. +See https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20 for how to solve this. + """) + + +already_displayed = {} + + +def display_once(e: Exception, task): + if task in already_displayed: + return + + display(e, task) + + already_displayed[task] = 1 + + +def run(code, task): + try: + code() + except Exception as e: + display(task, e) diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py new file mode 100644 index 0000000000000000000000000000000000000000..80131c62cfeaa7f95455df55c45d6e62591adeee --- /dev/null +++ b/modules/esrgan_model.py @@ -0,0 +1,233 @@ +import os + +import numpy as np +import torch +from PIL import Image +from basicsr.utils.download_util import load_file_from_url + +import modules.esrgan_model_arch as arch +from modules import shared, modelloader, images, devices +from modules.upscaler import Upscaler, UpscalerData +from modules.shared import opts + + + +def mod2normal(state_dict): + # this code is copied from https://github.com/victorca25/iNNfer + if 'conv_first.weight' in state_dict: + crt_net = {} + items = [] + for k, v in state_dict.items(): + items.append(k) + + crt_net['model.0.weight'] = state_dict['conv_first.weight'] + crt_net['model.0.bias'] = state_dict['conv_first.bias'] + + for k in items.copy(): + if 'RDB' in k: + ori_k = k.replace('RRDB_trunk.', 'model.1.sub.') + if '.weight' in k: + ori_k = ori_k.replace('.weight', '.0.weight') + elif '.bias' in k: + ori_k = ori_k.replace('.bias', '.0.bias') + crt_net[ori_k] = state_dict[k] + items.remove(k) + + crt_net['model.1.sub.23.weight'] = state_dict['trunk_conv.weight'] + crt_net['model.1.sub.23.bias'] = state_dict['trunk_conv.bias'] + crt_net['model.3.weight'] = state_dict['upconv1.weight'] + crt_net['model.3.bias'] = state_dict['upconv1.bias'] + crt_net['model.6.weight'] = state_dict['upconv2.weight'] + crt_net['model.6.bias'] = state_dict['upconv2.bias'] + crt_net['model.8.weight'] = state_dict['HRconv.weight'] + crt_net['model.8.bias'] = state_dict['HRconv.bias'] + crt_net['model.10.weight'] = state_dict['conv_last.weight'] + crt_net['model.10.bias'] = state_dict['conv_last.bias'] + state_dict = crt_net + return state_dict + + +def resrgan2normal(state_dict, nb=23): + # this code is copied from https://github.com/victorca25/iNNfer + if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict: + re8x = 0 + crt_net = {} + items = [] + for k, v in state_dict.items(): + items.append(k) + + crt_net['model.0.weight'] = state_dict['conv_first.weight'] + crt_net['model.0.bias'] = state_dict['conv_first.bias'] + + for k in items.copy(): + if "rdb" in k: + ori_k = k.replace('body.', 'model.1.sub.') + ori_k = ori_k.replace('.rdb', '.RDB') + if '.weight' in k: + ori_k = ori_k.replace('.weight', '.0.weight') + elif '.bias' in k: + ori_k = ori_k.replace('.bias', '.0.bias') + crt_net[ori_k] = state_dict[k] + items.remove(k) + + crt_net[f'model.1.sub.{nb}.weight'] = state_dict['conv_body.weight'] + crt_net[f'model.1.sub.{nb}.bias'] = state_dict['conv_body.bias'] + crt_net['model.3.weight'] = state_dict['conv_up1.weight'] + crt_net['model.3.bias'] = state_dict['conv_up1.bias'] + crt_net['model.6.weight'] = state_dict['conv_up2.weight'] + crt_net['model.6.bias'] = state_dict['conv_up2.bias'] + + if 'conv_up3.weight' in state_dict: + # modification supporting: https://github.com/ai-forever/Real-ESRGAN/blob/main/RealESRGAN/rrdbnet_arch.py + re8x = 3 + crt_net['model.9.weight'] = state_dict['conv_up3.weight'] + crt_net['model.9.bias'] = state_dict['conv_up3.bias'] + + crt_net[f'model.{8+re8x}.weight'] = state_dict['conv_hr.weight'] + crt_net[f'model.{8+re8x}.bias'] = state_dict['conv_hr.bias'] + crt_net[f'model.{10+re8x}.weight'] = state_dict['conv_last.weight'] + crt_net[f'model.{10+re8x}.bias'] = state_dict['conv_last.bias'] + + state_dict = crt_net + return state_dict + + +def infer_params(state_dict): + # this code is copied from https://github.com/victorca25/iNNfer + scale2x = 0 + scalemin = 6 + n_uplayer = 0 + plus = False + + for block in list(state_dict): + parts = block.split(".") + n_parts = len(parts) + if n_parts == 5 and parts[2] == "sub": + nb = int(parts[3]) + elif n_parts == 3: + part_num = int(parts[1]) + if (part_num > scalemin + and parts[0] == "model" + and parts[2] == "weight"): + scale2x += 1 + if part_num > n_uplayer: + n_uplayer = part_num + out_nc = state_dict[block].shape[0] + if not plus and "conv1x1" in block: + plus = True + + nf = state_dict["model.0.weight"].shape[0] + in_nc = state_dict["model.0.weight"].shape[1] + out_nc = out_nc + scale = 2 ** scale2x + + return in_nc, out_nc, nf, nb, plus, scale + + +class UpscalerESRGAN(Upscaler): + def __init__(self, dirname): + self.name = "ESRGAN" + self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/ESRGAN.pth" + self.model_name = "ESRGAN_4x" + self.scalers = [] + self.user_path = dirname + super().__init__() + model_paths = self.find_models(ext_filter=[".pt", ".pth"]) + scalers = [] + if len(model_paths) == 0: + scaler_data = UpscalerData(self.model_name, self.model_url, self, 4) + scalers.append(scaler_data) + for file in model_paths: + if "http" in file: + name = self.model_name + else: + name = modelloader.friendly_name(file) + + scaler_data = UpscalerData(name, file, self, 4) + self.scalers.append(scaler_data) + + def do_upscale(self, img, selected_model): + model = self.load_model(selected_model) + if model is None: + return img + model.to(devices.device_esrgan) + img = esrgan_upscale(model, img) + return img + + def load_model(self, path: str): + if "http" in path: + filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, + file_name="%s.pth" % self.model_name, + progress=True) + else: + filename = path + if not os.path.exists(filename) or filename is None: + print("Unable to load %s from %s" % (self.model_path, filename)) + return None + + state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None) + + if "params_ema" in state_dict: + state_dict = state_dict["params_ema"] + elif "params" in state_dict: + state_dict = state_dict["params"] + num_conv = 16 if "realesr-animevideov3" in filename else 32 + model = arch.SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=num_conv, upscale=4, act_type='prelu') + model.load_state_dict(state_dict) + model.eval() + return model + + if "body.0.rdb1.conv1.weight" in state_dict and "conv_first.weight" in state_dict: + nb = 6 if "RealESRGAN_x4plus_anime_6B" in filename else 23 + state_dict = resrgan2normal(state_dict, nb) + elif "conv_first.weight" in state_dict: + state_dict = mod2normal(state_dict) + elif "model.0.weight" not in state_dict: + raise Exception("The file is not a recognized ESRGAN model.") + + in_nc, out_nc, nf, nb, plus, mscale = infer_params(state_dict) + + model = arch.RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb, upscale=mscale, plus=plus) + model.load_state_dict(state_dict) + model.eval() + + return model + + +def upscale_without_tiling(model, img): + img = np.array(img) + img = img[:, :, ::-1] + img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255 + img = torch.from_numpy(img).float() + img = img.unsqueeze(0).to(devices.device_esrgan) + with torch.no_grad(): + output = model(img) + output = output.squeeze().float().cpu().clamp_(0, 1).numpy() + output = 255. * np.moveaxis(output, 0, 2) + output = output.astype(np.uint8) + output = output[:, :, ::-1] + return Image.fromarray(output, 'RGB') + + +def esrgan_upscale(model, img): + if opts.ESRGAN_tile == 0: + return upscale_without_tiling(model, img) + + grid = images.split_grid(img, opts.ESRGAN_tile, opts.ESRGAN_tile, opts.ESRGAN_tile_overlap) + newtiles = [] + scale_factor = 1 + + for y, h, row in grid.tiles: + newrow = [] + for tiledata in row: + x, w, tile = tiledata + + output = upscale_without_tiling(model, tile) + scale_factor = output.width // tile.width + + newrow.append([x * scale_factor, w * scale_factor, output]) + newtiles.append([y * scale_factor, h * scale_factor, newrow]) + + newgrid = images.Grid(newtiles, grid.tile_w * scale_factor, grid.tile_h * scale_factor, grid.image_w * scale_factor, grid.image_h * scale_factor, grid.overlap * scale_factor) + output = images.combine_grid(newgrid) + return output diff --git a/modules/esrgan_model_arch.py b/modules/esrgan_model_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..bec5962b595cfc0e6c52d916275538c9c4252068 --- /dev/null +++ b/modules/esrgan_model_arch.py @@ -0,0 +1,464 @@ +# this file is adapted from https://github.com/victorca25/iNNfer + +from collections import OrderedDict +import math +import functools +import torch +import torch.nn as nn +import torch.nn.functional as F + + +#################### +# RRDBNet Generator +#################### + +class RRDBNet(nn.Module): + def __init__(self, in_nc, out_nc, nf, nb, nr=3, gc=32, upscale=4, norm_type=None, + act_type='leakyrelu', mode='CNA', upsample_mode='upconv', convtype='Conv2D', + finalact=None, gaussian_noise=False, plus=False): + super(RRDBNet, self).__init__() + n_upscale = int(math.log(upscale, 2)) + if upscale == 3: + n_upscale = 1 + + self.resrgan_scale = 0 + if in_nc % 16 == 0: + self.resrgan_scale = 1 + elif in_nc != 4 and in_nc % 4 == 0: + self.resrgan_scale = 2 + + fea_conv = conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype) + rb_blocks = [RRDB(nf, nr, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero', + norm_type=norm_type, act_type=act_type, mode='CNA', convtype=convtype, + gaussian_noise=gaussian_noise, plus=plus) for _ in range(nb)] + LR_conv = conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode, convtype=convtype) + + if upsample_mode == 'upconv': + upsample_block = upconv_block + elif upsample_mode == 'pixelshuffle': + upsample_block = pixelshuffle_block + else: + raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode)) + if upscale == 3: + upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype) + else: + upsampler = [upsample_block(nf, nf, act_type=act_type, convtype=convtype) for _ in range(n_upscale)] + HR_conv0 = conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype) + HR_conv1 = conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype) + + outact = act(finalact) if finalact else None + + self.model = sequential(fea_conv, ShortcutBlock(sequential(*rb_blocks, LR_conv)), + *upsampler, HR_conv0, HR_conv1, outact) + + def forward(self, x, outm=None): + if self.resrgan_scale == 1: + feat = pixel_unshuffle(x, scale=4) + elif self.resrgan_scale == 2: + feat = pixel_unshuffle(x, scale=2) + else: + feat = x + + return self.model(feat) + + +class RRDB(nn.Module): + """ + Residual in Residual Dense Block + (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks) + """ + + def __init__(self, nf, nr=3, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero', + norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D', + spectral_norm=False, gaussian_noise=False, plus=False): + super(RRDB, self).__init__() + # This is for backwards compatibility with existing models + if nr == 3: + self.RDB1 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, + norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, + gaussian_noise=gaussian_noise, plus=plus) + self.RDB2 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, + norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, + gaussian_noise=gaussian_noise, plus=plus) + self.RDB3 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, + norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, + gaussian_noise=gaussian_noise, plus=plus) + else: + RDB_list = [ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type, + norm_type, act_type, mode, convtype, spectral_norm=spectral_norm, + gaussian_noise=gaussian_noise, plus=plus) for _ in range(nr)] + self.RDBs = nn.Sequential(*RDB_list) + + def forward(self, x): + if hasattr(self, 'RDB1'): + out = self.RDB1(x) + out = self.RDB2(out) + out = self.RDB3(out) + else: + out = self.RDBs(x) + return out * 0.2 + x + + +class ResidualDenseBlock_5C(nn.Module): + """ + Residual Dense Block + The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18) + Modified options that can be used: + - "Partial Convolution based Padding" arXiv:1811.11718 + - "Spectral normalization" arXiv:1802.05957 + - "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C. + {Rakotonirina} and A. {Rasoanaivo} + """ + + def __init__(self, nf=64, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero', + norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D', + spectral_norm=False, gaussian_noise=False, plus=False): + super(ResidualDenseBlock_5C, self).__init__() + + self.noise = GaussianNoise() if gaussian_noise else None + self.conv1x1 = conv1x1(nf, gc) if plus else None + + self.conv1 = conv_block(nf, gc, kernel_size, stride, bias=bias, pad_type=pad_type, + norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, + spectral_norm=spectral_norm) + self.conv2 = conv_block(nf+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, + norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, + spectral_norm=spectral_norm) + self.conv3 = conv_block(nf+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, + norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, + spectral_norm=spectral_norm) + self.conv4 = conv_block(nf+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, + norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype, + spectral_norm=spectral_norm) + if mode == 'CNA': + last_act = None + else: + last_act = act_type + self.conv5 = conv_block(nf+4*gc, nf, 3, stride, bias=bias, pad_type=pad_type, + norm_type=norm_type, act_type=last_act, mode=mode, convtype=convtype, + spectral_norm=spectral_norm) + + def forward(self, x): + x1 = self.conv1(x) + x2 = self.conv2(torch.cat((x, x1), 1)) + if self.conv1x1: + x2 = x2 + self.conv1x1(x) + x3 = self.conv3(torch.cat((x, x1, x2), 1)) + x4 = self.conv4(torch.cat((x, x1, x2, x3), 1)) + if self.conv1x1: + x4 = x4 + x2 + x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) + if self.noise: + return self.noise(x5.mul(0.2) + x) + else: + return x5 * 0.2 + x + + +#################### +# ESRGANplus +#################### + +class GaussianNoise(nn.Module): + def __init__(self, sigma=0.1, is_relative_detach=False): + super().__init__() + self.sigma = sigma + self.is_relative_detach = is_relative_detach + self.noise = torch.tensor(0, dtype=torch.float) + + def forward(self, x): + if self.training and self.sigma != 0: + self.noise = self.noise.to(x.device) + scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x + sampled_noise = self.noise.repeat(*x.size()).normal_() * scale + x = x + sampled_noise + return x + +def conv1x1(in_planes, out_planes, stride=1): + return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) + + +#################### +# SRVGGNetCompact +#################### + +class SRVGGNetCompact(nn.Module): + """A compact VGG-style network structure for super-resolution. + This class is copied from https://github.com/xinntao/Real-ESRGAN + """ + + def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'): + super(SRVGGNetCompact, self).__init__() + self.num_in_ch = num_in_ch + self.num_out_ch = num_out_ch + self.num_feat = num_feat + self.num_conv = num_conv + self.upscale = upscale + self.act_type = act_type + + self.body = nn.ModuleList() + # the first conv + self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)) + # the first activation + if act_type == 'relu': + activation = nn.ReLU(inplace=True) + elif act_type == 'prelu': + activation = nn.PReLU(num_parameters=num_feat) + elif act_type == 'leakyrelu': + activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) + self.body.append(activation) + + # the body structure + for _ in range(num_conv): + self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1)) + # activation + if act_type == 'relu': + activation = nn.ReLU(inplace=True) + elif act_type == 'prelu': + activation = nn.PReLU(num_parameters=num_feat) + elif act_type == 'leakyrelu': + activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) + self.body.append(activation) + + # the last conv + self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1)) + # upsample + self.upsampler = nn.PixelShuffle(upscale) + + def forward(self, x): + out = x + for i in range(0, len(self.body)): + out = self.body[i](out) + + out = self.upsampler(out) + # add the nearest upsampled image, so that the network learns the residual + base = F.interpolate(x, scale_factor=self.upscale, mode='nearest') + out += base + return out + + +#################### +# Upsampler +#################### + +class Upsample(nn.Module): + r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data. + The input data is assumed to be of the form + `minibatch x channels x [optional depth] x [optional height] x width`. + """ + + def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None): + super(Upsample, self).__init__() + if isinstance(scale_factor, tuple): + self.scale_factor = tuple(float(factor) for factor in scale_factor) + else: + self.scale_factor = float(scale_factor) if scale_factor else None + self.mode = mode + self.size = size + self.align_corners = align_corners + + def forward(self, x): + return nn.functional.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners) + + def extra_repr(self): + if self.scale_factor is not None: + info = 'scale_factor=' + str(self.scale_factor) + else: + info = 'size=' + str(self.size) + info += ', mode=' + self.mode + return info + + +def pixel_unshuffle(x, scale): + """ Pixel unshuffle. + Args: + x (Tensor): Input feature with shape (b, c, hh, hw). + scale (int): Downsample ratio. + Returns: + Tensor: the pixel unshuffled feature. + """ + b, c, hh, hw = x.size() + out_channel = c * (scale**2) + assert hh % scale == 0 and hw % scale == 0 + h = hh // scale + w = hw // scale + x_view = x.view(b, c, h, scale, w, scale) + return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w) + + +def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, + pad_type='zero', norm_type=None, act_type='relu', convtype='Conv2D'): + """ + Pixel shuffle layer + (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional + Neural Network, CVPR17) + """ + conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias, + pad_type=pad_type, norm_type=None, act_type=None, convtype=convtype) + pixel_shuffle = nn.PixelShuffle(upscale_factor) + + n = norm(norm_type, out_nc) if norm_type else None + a = act(act_type) if act_type else None + return sequential(conv, pixel_shuffle, n, a) + + +def upconv_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, + pad_type='zero', norm_type=None, act_type='relu', mode='nearest', convtype='Conv2D'): + """ Upconv layer """ + upscale_factor = (1, upscale_factor, upscale_factor) if convtype == 'Conv3D' else upscale_factor + upsample = Upsample(scale_factor=upscale_factor, mode=mode) + conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias, + pad_type=pad_type, norm_type=norm_type, act_type=act_type, convtype=convtype) + return sequential(upsample, conv) + + + + + + + + +#################### +# Basic blocks +#################### + + +def make_layer(basic_block, num_basic_block, **kwarg): + """Make layers by stacking the same blocks. + Args: + basic_block (nn.module): nn.module class for basic block. (block) + num_basic_block (int): number of blocks. (n_layers) + Returns: + nn.Sequential: Stacked blocks in nn.Sequential. + """ + layers = [] + for _ in range(num_basic_block): + layers.append(basic_block(**kwarg)) + return nn.Sequential(*layers) + + +def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0): + """ activation helper """ + act_type = act_type.lower() + if act_type == 'relu': + layer = nn.ReLU(inplace) + elif act_type in ('leakyrelu', 'lrelu'): + layer = nn.LeakyReLU(neg_slope, inplace) + elif act_type == 'prelu': + layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope) + elif act_type == 'tanh': # [-1, 1] range output + layer = nn.Tanh() + elif act_type == 'sigmoid': # [0, 1] range output + layer = nn.Sigmoid() + else: + raise NotImplementedError('activation layer [{:s}] is not found'.format(act_type)) + return layer + + +class Identity(nn.Module): + def __init__(self, *kwargs): + super(Identity, self).__init__() + + def forward(self, x, *kwargs): + return x + + +def norm(norm_type, nc): + """ Return a normalization layer """ + norm_type = norm_type.lower() + if norm_type == 'batch': + layer = nn.BatchNorm2d(nc, affine=True) + elif norm_type == 'instance': + layer = nn.InstanceNorm2d(nc, affine=False) + elif norm_type == 'none': + def norm_layer(x): return Identity() + else: + raise NotImplementedError('normalization layer [{:s}] is not found'.format(norm_type)) + return layer + + +def pad(pad_type, padding): + """ padding layer helper """ + pad_type = pad_type.lower() + if padding == 0: + return None + if pad_type == 'reflect': + layer = nn.ReflectionPad2d(padding) + elif pad_type == 'replicate': + layer = nn.ReplicationPad2d(padding) + elif pad_type == 'zero': + layer = nn.ZeroPad2d(padding) + else: + raise NotImplementedError('padding layer [{:s}] is not implemented'.format(pad_type)) + return layer + + +def get_valid_padding(kernel_size, dilation): + kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1) + padding = (kernel_size - 1) // 2 + return padding + + +class ShortcutBlock(nn.Module): + """ Elementwise sum the output of a submodule to its input """ + def __init__(self, submodule): + super(ShortcutBlock, self).__init__() + self.sub = submodule + + def forward(self, x): + output = x + self.sub(x) + return output + + def __repr__(self): + return 'Identity + \n|' + self.sub.__repr__().replace('\n', '\n|') + + +def sequential(*args): + """ Flatten Sequential. It unwraps nn.Sequential. """ + if len(args) == 1: + if isinstance(args[0], OrderedDict): + raise NotImplementedError('sequential does not support OrderedDict input.') + return args[0] # No sequential is needed. + modules = [] + for module in args: + if isinstance(module, nn.Sequential): + for submodule in module.children(): + modules.append(submodule) + elif isinstance(module, nn.Module): + modules.append(module) + return nn.Sequential(*modules) + + +def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True, + pad_type='zero', norm_type=None, act_type='relu', mode='CNA', convtype='Conv2D', + spectral_norm=False): + """ Conv layer with padding, normalization, activation """ + assert mode in ['CNA', 'NAC', 'CNAC'], 'Wrong conv mode [{:s}]'.format(mode) + padding = get_valid_padding(kernel_size, dilation) + p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None + padding = padding if pad_type == 'zero' else 0 + + if convtype=='PartialConv2D': + c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, + dilation=dilation, bias=bias, groups=groups) + elif convtype=='DeformConv2D': + c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, + dilation=dilation, bias=bias, groups=groups) + elif convtype=='Conv3D': + c = nn.Conv3d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, + dilation=dilation, bias=bias, groups=groups) + else: + c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, + dilation=dilation, bias=bias, groups=groups) + + if spectral_norm: + c = nn.utils.spectral_norm(c) + + a = act(act_type) if act_type else None + if 'CNA' in mode: + n = norm(norm_type, out_nc) if norm_type else None + return sequential(p, c, n, a) + elif mode == 'NAC': + if norm_type is None and act_type is not None: + a = act(act_type, inplace=False) + n = norm(norm_type, in_nc) if norm_type else None + return sequential(n, a, p, c) diff --git a/modules/extensions.py b/modules/extensions.py new file mode 100644 index 0000000000000000000000000000000000000000..1be7509685e5c11a6f0e44cd39d11613c8ba3e9f --- /dev/null +++ b/modules/extensions.py @@ -0,0 +1,107 @@ +import os +import sys +import traceback + +import time +import git + +from modules import paths, shared + +extensions = [] +extensions_dir = os.path.join(paths.data_path, "extensions") +extensions_builtin_dir = os.path.join(paths.script_path, "extensions-builtin") + +if not os.path.exists(extensions_dir): + os.makedirs(extensions_dir) + +def active(): + return [x for x in extensions if x.enabled] + + +class Extension: + def __init__(self, name, path, enabled=True, is_builtin=False): + self.name = name + self.path = path + self.enabled = enabled + self.status = '' + self.can_update = False + self.is_builtin = is_builtin + self.version = '' + + repo = None + try: + if os.path.exists(os.path.join(path, ".git")): + repo = git.Repo(path) + except Exception: + print(f"Error reading github repository info from {path}:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + + if repo is None or repo.bare: + self.remote = None + else: + try: + self.remote = next(repo.remote().urls, None) + self.status = 'unknown' + head = repo.head.commit + ts = time.asctime(time.gmtime(repo.head.commit.committed_date)) + self.version = f'{head.hexsha[:8]} ({ts})' + + except Exception: + self.remote = None + + def list_files(self, subdir, extension): + from modules import scripts + + dirpath = os.path.join(self.path, subdir) + if not os.path.isdir(dirpath): + return [] + + res = [] + for filename in sorted(os.listdir(dirpath)): + res.append(scripts.ScriptFile(self.path, filename, os.path.join(dirpath, filename))) + + res = [x for x in res if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)] + + return res + + def check_updates(self): + repo = git.Repo(self.path) + for fetch in repo.remote().fetch("--dry-run"): + if fetch.flags != fetch.HEAD_UPTODATE: + self.can_update = True + self.status = "behind" + return + + self.can_update = False + self.status = "latest" + + def fetch_and_reset_hard(self): + repo = git.Repo(self.path) + # Fix: `error: Your local changes to the following files would be overwritten by merge`, + # because WSL2 Docker set 755 file permissions instead of 644, this results to the error. + repo.git.fetch('--all') + repo.git.reset('--hard', 'origin') + + +def list_extensions(): + extensions.clear() + + if not os.path.isdir(extensions_dir): + return + + paths = [] + for dirname in [extensions_dir, extensions_builtin_dir]: + if not os.path.isdir(dirname): + return + + for extension_dirname in sorted(os.listdir(dirname)): + path = os.path.join(dirname, extension_dirname) + if not os.path.isdir(path): + continue + + paths.append((extension_dirname, path, dirname == extensions_builtin_dir)) + + for dirname, path, is_builtin in paths: + extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions, is_builtin=is_builtin) + extensions.append(extension) + diff --git a/modules/extra_networks.py b/modules/extra_networks.py new file mode 100644 index 0000000000000000000000000000000000000000..cf6aa7907156aefa62f183fdcd25fea3e17252b4 --- /dev/null +++ b/modules/extra_networks.py @@ -0,0 +1,147 @@ +import re +from collections import defaultdict + +from modules import errors + +extra_network_registry = {} + + +def initialize(): + extra_network_registry.clear() + + +def register_extra_network(extra_network): + extra_network_registry[extra_network.name] = extra_network + + +class ExtraNetworkParams: + def __init__(self, items=None): + self.items = items or [] + + +class ExtraNetwork: + def __init__(self, name): + self.name = name + + def activate(self, p, params_list): + """ + Called by processing on every run. Whatever the extra network is meant to do should be activated here. + Passes arguments related to this extra network in params_list. + User passes arguments by specifying this in his prompt: + + + + Where name matches the name of this ExtraNetwork object, and arg1:arg2:arg3 are any natural number of text arguments + separated by colon. + + Even if the user does not mention this ExtraNetwork in his prompt, the call will stil be made, with empty params_list - + in this case, all effects of this extra networks should be disabled. + + Can be called multiple times before deactivate() - each new call should override the previous call completely. + + For example, if this ExtraNetwork's name is 'hypernet' and user's prompt is: + + > "1girl, " + + params_list will be: + + [ + ExtraNetworkParams(items=["agm", "1.1"]), + ExtraNetworkParams(items=["ray"]) + ] + + """ + raise NotImplementedError + + def deactivate(self, p): + """ + Called at the end of processing for housekeeping. No need to do anything here. + """ + + raise NotImplementedError + + +def activate(p, extra_network_data): + """call activate for extra networks in extra_network_data in specified order, then call + activate for all remaining registered networks with an empty argument list""" + + for extra_network_name, extra_network_args in extra_network_data.items(): + extra_network = extra_network_registry.get(extra_network_name, None) + if extra_network is None: + print(f"Skipping unknown extra network: {extra_network_name}") + continue + + try: + extra_network.activate(p, extra_network_args) + except Exception as e: + errors.display(e, f"activating extra network {extra_network_name} with arguments {extra_network_args}") + + for extra_network_name, extra_network in extra_network_registry.items(): + args = extra_network_data.get(extra_network_name, None) + if args is not None: + continue + + try: + extra_network.activate(p, []) + except Exception as e: + errors.display(e, f"activating extra network {extra_network_name}") + + +def deactivate(p, extra_network_data): + """call deactivate for extra networks in extra_network_data in specified order, then call + deactivate for all remaining registered networks""" + + for extra_network_name, extra_network_args in extra_network_data.items(): + extra_network = extra_network_registry.get(extra_network_name, None) + if extra_network is None: + continue + + try: + extra_network.deactivate(p) + except Exception as e: + errors.display(e, f"deactivating extra network {extra_network_name}") + + for extra_network_name, extra_network in extra_network_registry.items(): + args = extra_network_data.get(extra_network_name, None) + if args is not None: + continue + + try: + extra_network.deactivate(p) + except Exception as e: + errors.display(e, f"deactivating unmentioned extra network {extra_network_name}") + + +re_extra_net = re.compile(r"<(\w+):([^>]+)>") + + +def parse_prompt(prompt): + res = defaultdict(list) + + def found(m): + name = m.group(1) + args = m.group(2) + + res[name].append(ExtraNetworkParams(items=args.split(":"))) + + return "" + + prompt = re.sub(re_extra_net, found, prompt) + + return prompt, res + + +def parse_prompts(prompts): + res = [] + extra_data = None + + for prompt in prompts: + updated_prompt, parsed_extra_data = parse_prompt(prompt) + + if extra_data is None: + extra_data = parsed_extra_data + + res.append(updated_prompt) + + return res, extra_data + diff --git a/modules/extra_networks_hypernet.py b/modules/extra_networks_hypernet.py new file mode 100644 index 0000000000000000000000000000000000000000..207343daa673c14a362d4bd2399982d9ad86fe22 --- /dev/null +++ b/modules/extra_networks_hypernet.py @@ -0,0 +1,27 @@ +from modules import extra_networks, shared, extra_networks +from modules.hypernetworks import hypernetwork + + +class ExtraNetworkHypernet(extra_networks.ExtraNetwork): + def __init__(self): + super().__init__('hypernet') + + def activate(self, p, params_list): + additional = shared.opts.sd_hypernetwork + + if additional != "" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0: + p.all_prompts = [x + f"" for x in p.all_prompts] + params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier])) + + names = [] + multipliers = [] + for params in params_list: + assert len(params.items) > 0 + + names.append(params.items[0]) + multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0) + + hypernetwork.load_hypernetworks(names, multipliers) + + def deactivate(self, p): + pass diff --git a/modules/extras.py b/modules/extras.py new file mode 100644 index 0000000000000000000000000000000000000000..6a9af2d8e641fdf1ebd29045078d29b5aeae3d6f --- /dev/null +++ b/modules/extras.py @@ -0,0 +1,258 @@ +import os +import re +import shutil + + +import torch +import tqdm + +from modules import shared, images, sd_models, sd_vae, sd_models_config +from modules.ui_common import plaintext_to_html +import gradio as gr +import safetensors.torch + + +def run_pnginfo(image): + if image is None: + return '', '', '' + + geninfo, items = images.read_info_from_image(image) + items = {**{'parameters': geninfo}, **items} + + info = '' + for key, text in items.items(): + info += f""" +
+

{plaintext_to_html(str(key))}

+

{plaintext_to_html(str(text))}

+
+""".strip()+"\n" + + if len(info) == 0: + message = "Nothing found in the image." + info = f"

{message}

" + + return '', geninfo, info + + +def create_config(ckpt_result, config_source, a, b, c): + def config(x): + res = sd_models_config.find_checkpoint_config_near_filename(x) if x else None + return res if res != shared.sd_default_config else None + + if config_source == 0: + cfg = config(a) or config(b) or config(c) + elif config_source == 1: + cfg = config(b) + elif config_source == 2: + cfg = config(c) + else: + cfg = None + + if cfg is None: + return + + filename, _ = os.path.splitext(ckpt_result) + checkpoint_filename = filename + ".yaml" + + print("Copying config:") + print(" from:", cfg) + print(" to:", checkpoint_filename) + shutil.copyfile(cfg, checkpoint_filename) + + +checkpoint_dict_skip_on_merge = ["cond_stage_model.transformer.text_model.embeddings.position_ids"] + + +def to_half(tensor, enable): + if enable and tensor.dtype == torch.float: + return tensor.half() + + return tensor + + +def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights): + shared.state.begin() + shared.state.job = 'model-merge' + + def fail(message): + shared.state.textinfo = message + shared.state.end() + return [*[gr.update() for _ in range(4)], message] + + def weighted_sum(theta0, theta1, alpha): + return ((1 - alpha) * theta0) + (alpha * theta1) + + def get_difference(theta1, theta2): + return theta1 - theta2 + + def add_difference(theta0, theta1_2_diff, alpha): + return theta0 + (alpha * theta1_2_diff) + + def filename_weighted_sum(): + a = primary_model_info.model_name + b = secondary_model_info.model_name + Ma = round(1 - multiplier, 2) + Mb = round(multiplier, 2) + + return f"{Ma}({a}) + {Mb}({b})" + + def filename_add_difference(): + a = primary_model_info.model_name + b = secondary_model_info.model_name + c = tertiary_model_info.model_name + M = round(multiplier, 2) + + return f"{a} + {M}({b} - {c})" + + def filename_nothing(): + return primary_model_info.model_name + + theta_funcs = { + "Weighted sum": (filename_weighted_sum, None, weighted_sum), + "Add difference": (filename_add_difference, get_difference, add_difference), + "No interpolation": (filename_nothing, None, None), + } + filename_generator, theta_func1, theta_func2 = theta_funcs[interp_method] + shared.state.job_count = (1 if theta_func1 else 0) + (1 if theta_func2 else 0) + + if not primary_model_name: + return fail("Failed: Merging requires a primary model.") + + primary_model_info = sd_models.checkpoints_list[primary_model_name] + + if theta_func2 and not secondary_model_name: + return fail("Failed: Merging requires a secondary model.") + + secondary_model_info = sd_models.checkpoints_list[secondary_model_name] if theta_func2 else None + + if theta_func1 and not tertiary_model_name: + return fail(f"Failed: Interpolation method ({interp_method}) requires a tertiary model.") + + tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None + + result_is_inpainting_model = False + result_is_instruct_pix2pix_model = False + + if theta_func2: + shared.state.textinfo = f"Loading B" + print(f"Loading {secondary_model_info.filename}...") + theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu') + else: + theta_1 = None + + if theta_func1: + shared.state.textinfo = f"Loading C" + print(f"Loading {tertiary_model_info.filename}...") + theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu') + + shared.state.textinfo = 'Merging B and C' + shared.state.sampling_steps = len(theta_1.keys()) + for key in tqdm.tqdm(theta_1.keys()): + if key in checkpoint_dict_skip_on_merge: + continue + + if 'model' in key: + if key in theta_2: + t2 = theta_2.get(key, torch.zeros_like(theta_1[key])) + theta_1[key] = theta_func1(theta_1[key], t2) + else: + theta_1[key] = torch.zeros_like(theta_1[key]) + + shared.state.sampling_step += 1 + del theta_2 + + shared.state.nextjob() + + shared.state.textinfo = f"Loading {primary_model_info.filename}..." + print(f"Loading {primary_model_info.filename}...") + theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu') + + print("Merging...") + shared.state.textinfo = 'Merging A and B' + shared.state.sampling_steps = len(theta_0.keys()) + for key in tqdm.tqdm(theta_0.keys()): + if theta_1 and 'model' in key and key in theta_1: + + if key in checkpoint_dict_skip_on_merge: + continue + + a = theta_0[key] + b = theta_1[key] + + # this enables merging an inpainting model (A) with another one (B); + # where normal model would have 4 channels, for latenst space, inpainting model would + # have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9 + if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]: + if a.shape[1] == 4 and b.shape[1] == 9: + raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.") + if a.shape[1] == 4 and b.shape[1] == 8: + raise RuntimeError("When merging instruct-pix2pix model with a normal one, A must be the instruct-pix2pix model.") + + if a.shape[1] == 8 and b.shape[1] == 4:#If we have an Instruct-Pix2Pix model... + theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)#Merge only the vectors the models have in common. Otherwise we get an error due to dimension mismatch. + result_is_instruct_pix2pix_model = True + else: + assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}" + theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier) + result_is_inpainting_model = True + else: + theta_0[key] = theta_func2(a, b, multiplier) + + theta_0[key] = to_half(theta_0[key], save_as_half) + + shared.state.sampling_step += 1 + + del theta_1 + + bake_in_vae_filename = sd_vae.vae_dict.get(bake_in_vae, None) + if bake_in_vae_filename is not None: + print(f"Baking in VAE from {bake_in_vae_filename}") + shared.state.textinfo = 'Baking in VAE' + vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename, map_location='cpu') + + for key in vae_dict.keys(): + theta_0_key = 'first_stage_model.' + key + if theta_0_key in theta_0: + theta_0[theta_0_key] = to_half(vae_dict[key], save_as_half) + + del vae_dict + + if save_as_half and not theta_func2: + for key in theta_0.keys(): + theta_0[key] = to_half(theta_0[key], save_as_half) + + if discard_weights: + regex = re.compile(discard_weights) + for key in list(theta_0): + if re.search(regex, key): + theta_0.pop(key, None) + + ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path + + filename = filename_generator() if custom_name == '' else custom_name + filename += ".inpainting" if result_is_inpainting_model else "" + filename += ".instruct-pix2pix" if result_is_instruct_pix2pix_model else "" + filename += "." + checkpoint_format + + output_modelname = os.path.join(ckpt_dir, filename) + + shared.state.nextjob() + shared.state.textinfo = "Saving" + print(f"Saving to {output_modelname}...") + + _, extension = os.path.splitext(output_modelname) + if extension.lower() == ".safetensors": + safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"}) + else: + torch.save(theta_0, output_modelname) + + sd_models.list_models() + + create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info) + + print(f"Checkpoint saved to {output_modelname}.") + shared.state.textinfo = "Checkpoint saved" + shared.state.end() + + return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], "Checkpoint saved to " + output_modelname] diff --git a/modules/face_restoration.py b/modules/face_restoration.py new file mode 100644 index 0000000000000000000000000000000000000000..2c86c6ccce338a1411f4367a0bc6e4046ad67cae --- /dev/null +++ b/modules/face_restoration.py @@ -0,0 +1,19 @@ +from modules import shared + + +class FaceRestoration: + def name(self): + return "None" + + def restore(self, np_image): + return np_image + + +def restore_faces(np_image): + face_restorers = [x for x in shared.face_restorers if x.name() == shared.opts.face_restoration_model or shared.opts.face_restoration_model is None] + if len(face_restorers) == 0: + return np_image + + face_restorer = face_restorers[0] + + return face_restorer.restore(np_image) diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py new file mode 100644 index 0000000000000000000000000000000000000000..3bab793d67baf1fdc598775722f1e44083c94d95 --- /dev/null +++ b/modules/generation_parameters_copypaste.py @@ -0,0 +1,402 @@ +import base64 +import html +import io +import math +import os +import re +from pathlib import Path + +import gradio as gr +from modules.paths import data_path +from modules import shared, ui_tempdir, script_callbacks +import tempfile +from PIL import Image + +re_param_code = r'\s*([\w ]+):\s*("(?:\\"[^,]|\\"|\\|[^\"])+"|[^,]*)(?:,|$)' +re_param = re.compile(re_param_code) +re_imagesize = re.compile(r"^(\d+)x(\d+)$") +re_hypernet_hash = re.compile("\(([0-9a-f]+)\)$") +type_of_gr_update = type(gr.update()) + +paste_fields = {} +registered_param_bindings = [] + + +class ParamBinding: + def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None): + self.paste_button = paste_button + self.tabname = tabname + self.source_text_component = source_text_component + self.source_image_component = source_image_component + self.source_tabname = source_tabname + self.override_settings_component = override_settings_component + + +def reset(): + paste_fields.clear() + + +def quote(text): + if ',' not in str(text): + return text + + text = str(text) + text = text.replace('\\', '\\\\') + text = text.replace('"', '\\"') + return f'"{text}"' + + +def image_from_url_text(filedata): + if filedata is None: + return None + + if type(filedata) == list and len(filedata) > 0 and type(filedata[0]) == dict and filedata[0].get("is_file", False): + filedata = filedata[0] + + if type(filedata) == dict and filedata.get("is_file", False): + filename = filedata["name"] + is_in_right_dir = ui_tempdir.check_tmp_file(shared.demo, filename) + assert is_in_right_dir, 'trying to open image file outside of allowed directories' + + return Image.open(filename) + + if type(filedata) == list: + if len(filedata) == 0: + return None + + filedata = filedata[0] + + if filedata.startswith("data:image/png;base64,"): + filedata = filedata[len("data:image/png;base64,"):] + + filedata = base64.decodebytes(filedata.encode('utf-8')) + image = Image.open(io.BytesIO(filedata)) + return image + + +def add_paste_fields(tabname, init_img, fields, override_settings_component=None): + paste_fields[tabname] = {"init_img": init_img, "fields": fields, "override_settings_component": override_settings_component} + + # backwards compatibility for existing extensions + import modules.ui + if tabname == 'txt2img': + modules.ui.txt2img_paste_fields = fields + elif tabname == 'img2img': + modules.ui.img2img_paste_fields = fields + + +def create_buttons(tabs_list): + buttons = {} + for tab in tabs_list: + buttons[tab] = gr.Button(f"Send to {tab}", elem_id=f"{tab}_tab") + return buttons + + +def bind_buttons(buttons, send_image, send_generate_info): + """old function for backwards compatibility; do not use this, use register_paste_params_button""" + for tabname, button in buttons.items(): + source_text_component = send_generate_info if isinstance(send_generate_info, gr.components.Component) else None + source_tabname = send_generate_info if isinstance(send_generate_info, str) else None + + register_paste_params_button(ParamBinding(paste_button=button, tabname=tabname, source_text_component=source_text_component, source_image_component=send_image, source_tabname=source_tabname)) + + +def register_paste_params_button(binding: ParamBinding): + registered_param_bindings.append(binding) + + +def connect_paste_params_buttons(): + binding: ParamBinding + for binding in registered_param_bindings: + destination_image_component = paste_fields[binding.tabname]["init_img"] + fields = paste_fields[binding.tabname]["fields"] + override_settings_component = binding.override_settings_component or paste_fields[binding.tabname]["override_settings_component"] + + destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None) + destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None) + + if binding.source_image_component and destination_image_component: + if isinstance(binding.source_image_component, gr.Gallery): + func = send_image_and_dimensions if destination_width_component else image_from_url_text + jsfunc = "extract_image_from_gallery" + else: + func = send_image_and_dimensions if destination_width_component else lambda x: x + jsfunc = None + + binding.paste_button.click( + fn=func, + _js=jsfunc, + inputs=[binding.source_image_component], + outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component], + ) + + if binding.source_text_component is not None and fields is not None: + connect_paste(binding.paste_button, fields, binding.source_text_component, override_settings_component, binding.tabname) + + if binding.source_tabname is not None and fields is not None: + paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else []) + binding.paste_button.click( + fn=lambda *x: x, + inputs=[field for field, name in paste_fields[binding.source_tabname]["fields"] if name in paste_field_names], + outputs=[field for field, name in fields if name in paste_field_names], + ) + + binding.paste_button.click( + fn=None, + _js=f"switch_to_{binding.tabname}", + inputs=None, + outputs=None, + ) + + +def send_image_and_dimensions(x): + if isinstance(x, Image.Image): + img = x + else: + img = image_from_url_text(x) + + if shared.opts.send_size and isinstance(img, Image.Image): + w = img.width + h = img.height + else: + w = gr.update() + h = gr.update() + + return img, w, h + + + +def find_hypernetwork_key(hypernet_name, hypernet_hash=None): + """Determines the config parameter name to use for the hypernet based on the parameters in the infotext. + + Example: an infotext provides "Hypernet: ke-ta" and "Hypernet hash: 1234abcd". For the "Hypernet" config + parameter this means there should be an entry that looks like "ke-ta-10000(1234abcd)" to set it to. + + If the infotext has no hash, then a hypernet with the same name will be selected instead. + """ + hypernet_name = hypernet_name.lower() + if hypernet_hash is not None: + # Try to match the hash in the name + for hypernet_key in shared.hypernetworks.keys(): + result = re_hypernet_hash.search(hypernet_key) + if result is not None and result[1] == hypernet_hash: + return hypernet_key + else: + # Fall back to a hypernet with the same name + for hypernet_key in shared.hypernetworks.keys(): + if hypernet_key.lower().startswith(hypernet_name): + return hypernet_key + + return None + + +def restore_old_hires_fix_params(res): + """for infotexts that specify old First pass size parameter, convert it into + width, height, and hr scale""" + + firstpass_width = res.get('First pass size-1', None) + firstpass_height = res.get('First pass size-2', None) + + if shared.opts.use_old_hires_fix_width_height: + hires_width = int(res.get("Hires resize-1", 0)) + hires_height = int(res.get("Hires resize-2", 0)) + + if hires_width and hires_height: + res['Size-1'] = hires_width + res['Size-2'] = hires_height + return + + if firstpass_width is None or firstpass_height is None: + return + + firstpass_width, firstpass_height = int(firstpass_width), int(firstpass_height) + width = int(res.get("Size-1", 512)) + height = int(res.get("Size-2", 512)) + + if firstpass_width == 0 or firstpass_height == 0: + from modules import processing + firstpass_width, firstpass_height = processing.old_hires_fix_first_pass_dimensions(width, height) + + res['Size-1'] = firstpass_width + res['Size-2'] = firstpass_height + res['Hires resize-1'] = width + res['Hires resize-2'] = height + + +def parse_generation_parameters(x: str): + """parses generation parameters string, the one you see in text field under the picture in UI: +``` +girl with an artist's beret, determined, blue eyes, desert scene, computer monitors, heavy makeup, by Alphonse Mucha and Charlie Bowater, ((eyeshadow)), (coquettish), detailed, intricate +Negative prompt: ugly, fat, obese, chubby, (((deformed))), [blurry], bad anatomy, disfigured, poorly drawn face, mutation, mutated, (extra_limb), (ugly), (poorly drawn hands), messy drawing +Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model hash: 45dee52b +``` + + returns a dict with field values + """ + + res = {} + + prompt = "" + negative_prompt = "" + + done_with_prompt = False + + *lines, lastline = x.strip().split("\n") + if len(re_param.findall(lastline)) < 3: + lines.append(lastline) + lastline = '' + + for i, line in enumerate(lines): + line = line.strip() + if line.startswith("Negative prompt:"): + done_with_prompt = True + line = line[16:].strip() + + if done_with_prompt: + negative_prompt += ("" if negative_prompt == "" else "\n") + line + else: + prompt += ("" if prompt == "" else "\n") + line + + res["Prompt"] = prompt + res["Negative prompt"] = negative_prompt + + for k, v in re_param.findall(lastline): + v = v[1:-1] if v[0] == '"' and v[-1] == '"' else v + m = re_imagesize.match(v) + if m is not None: + res[k+"-1"] = m.group(1) + res[k+"-2"] = m.group(2) + else: + res[k] = v + + # Missing CLIP skip means it was set to 1 (the default) + if "Clip skip" not in res: + res["Clip skip"] = "1" + + hypernet = res.get("Hypernet", None) + if hypernet is not None: + res["Prompt"] += f"""""" + + if "Hires resize-1" not in res: + res["Hires resize-1"] = 0 + res["Hires resize-2"] = 0 + + restore_old_hires_fix_params(res) + + return res + + +settings_map = {} + +infotext_to_setting_name_mapping = [ + ('Clip skip', 'CLIP_stop_at_last_layers', ), + ('Conditional mask weight', 'inpainting_mask_weight'), + ('Model hash', 'sd_model_checkpoint'), + ('ENSD', 'eta_noise_seed_delta'), + ('Noise multiplier', 'initial_noise_multiplier'), + ('Eta', 'eta_ancestral'), + ('Eta DDIM', 'eta_ddim'), + ('Discard penultimate sigma', 'always_discard_next_to_last_sigma') +] + + +def create_override_settings_dict(text_pairs): + """creates processing's override_settings parameters from gradio's multiselect + + Example input: + ['Clip skip: 2', 'Model hash: e6e99610c4', 'ENSD: 31337'] + + Example output: + {'CLIP_stop_at_last_layers': 2, 'sd_model_checkpoint': 'e6e99610c4', 'eta_noise_seed_delta': 31337} + """ + + res = {} + + params = {} + for pair in text_pairs: + k, v = pair.split(":", maxsplit=1) + + params[k] = v.strip() + + for param_name, setting_name in infotext_to_setting_name_mapping: + value = params.get(param_name, None) + + if value is None: + continue + + res[setting_name] = shared.opts.cast_value(setting_name, value) + + return res + + +def connect_paste(button, paste_fields, input_comp, override_settings_component, tabname): + def paste_func(prompt): + if not prompt and not shared.cmd_opts.hide_ui_dir_config: + filename = os.path.join(data_path, "params.txt") + if os.path.exists(filename): + with open(filename, "r", encoding="utf8") as file: + prompt = file.read() + + params = parse_generation_parameters(prompt) + script_callbacks.infotext_pasted_callback(prompt, params) + res = [] + + for output, key in paste_fields: + if callable(key): + v = key(params) + else: + v = params.get(key, None) + + if v is None: + res.append(gr.update()) + elif isinstance(v, type_of_gr_update): + res.append(v) + else: + try: + valtype = type(output.value) + + if valtype == bool and v == "False": + val = False + else: + val = valtype(v) + + res.append(gr.update(value=val)) + except Exception: + res.append(gr.update()) + + return res + + if override_settings_component is not None: + def paste_settings(params): + vals = {} + + for param_name, setting_name in infotext_to_setting_name_mapping: + v = params.get(param_name, None) + if v is None: + continue + + if setting_name == "sd_model_checkpoint" and shared.opts.disable_weights_auto_swap: + continue + + v = shared.opts.cast_value(setting_name, v) + current_value = getattr(shared.opts, setting_name, None) + + if v == current_value: + continue + + vals[param_name] = v + + vals_pairs = [f"{k}: {v}" for k, v in vals.items()] + + return gr.Dropdown.update(value=vals_pairs, choices=vals_pairs, visible=len(vals_pairs) > 0) + + paste_fields = paste_fields + [(override_settings_component, paste_settings)] + + button.click( + fn=paste_func, + _js=f"recalculate_prompts_{tabname}", + inputs=[input_comp], + outputs=[x[0] for x in paste_fields], + ) + + diff --git a/modules/gfpgan_model.py b/modules/gfpgan_model.py new file mode 100644 index 0000000000000000000000000000000000000000..bc0c5f738e086225505af9738862fde4eecfa4a9 --- /dev/null +++ b/modules/gfpgan_model.py @@ -0,0 +1,116 @@ +import os +import sys +import traceback + +import facexlib +import gfpgan + +import modules.face_restoration +from modules import paths, shared, devices, modelloader + +model_dir = "GFPGAN" +user_path = None +model_path = os.path.join(paths.models_path, model_dir) +model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth" +have_gfpgan = False +loaded_gfpgan_model = None + + +def gfpgann(): + global loaded_gfpgan_model + global model_path + if loaded_gfpgan_model is not None: + loaded_gfpgan_model.gfpgan.to(devices.device_gfpgan) + return loaded_gfpgan_model + + if gfpgan_constructor is None: + return None + + models = modelloader.load_models(model_path, model_url, user_path, ext_filter="GFPGAN") + if len(models) == 1 and "http" in models[0]: + model_file = models[0] + elif len(models) != 0: + latest_file = max(models, key=os.path.getctime) + model_file = latest_file + else: + print("Unable to load gfpgan model!") + return None + if hasattr(facexlib.detection.retinaface, 'device'): + facexlib.detection.retinaface.device = devices.device_gfpgan + model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan) + loaded_gfpgan_model = model + + return model + + +def send_model_to(model, device): + model.gfpgan.to(device) + model.face_helper.face_det.to(device) + model.face_helper.face_parse.to(device) + + +def gfpgan_fix_faces(np_image): + model = gfpgann() + if model is None: + return np_image + + send_model_to(model, devices.device_gfpgan) + + np_image_bgr = np_image[:, :, ::-1] + cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True) + np_image = gfpgan_output_bgr[:, :, ::-1] + + model.face_helper.clean_all() + + if shared.opts.face_restoration_unload: + send_model_to(model, devices.cpu) + + return np_image + + +gfpgan_constructor = None + + +def setup_model(dirname): + global model_path + if not os.path.exists(model_path): + os.makedirs(model_path) + + try: + from gfpgan import GFPGANer + from facexlib import detection, parsing + global user_path + global have_gfpgan + global gfpgan_constructor + + load_file_from_url_orig = gfpgan.utils.load_file_from_url + facex_load_file_from_url_orig = facexlib.detection.load_file_from_url + facex_load_file_from_url_orig2 = facexlib.parsing.load_file_from_url + + def my_load_file_from_url(**kwargs): + return load_file_from_url_orig(**dict(kwargs, model_dir=model_path)) + + def facex_load_file_from_url(**kwargs): + return facex_load_file_from_url_orig(**dict(kwargs, save_dir=model_path, model_dir=None)) + + def facex_load_file_from_url2(**kwargs): + return facex_load_file_from_url_orig2(**dict(kwargs, save_dir=model_path, model_dir=None)) + + gfpgan.utils.load_file_from_url = my_load_file_from_url + facexlib.detection.load_file_from_url = facex_load_file_from_url + facexlib.parsing.load_file_from_url = facex_load_file_from_url2 + user_path = dirname + have_gfpgan = True + gfpgan_constructor = GFPGANer + + class FaceRestorerGFPGAN(modules.face_restoration.FaceRestoration): + def name(self): + return "GFPGAN" + + def restore(self, np_image): + return gfpgan_fix_faces(np_image) + + shared.face_restorers.append(FaceRestorerGFPGAN()) + except Exception: + print("Error setting up GFPGAN:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) diff --git a/modules/hashes.py b/modules/hashes.py new file mode 100644 index 0000000000000000000000000000000000000000..46abf99c304b23bf8e3e394e07c2209d4130afef --- /dev/null +++ b/modules/hashes.py @@ -0,0 +1,91 @@ +import hashlib +import json +import os.path + +import filelock + +from modules import shared +from modules.paths import data_path + + +cache_filename = os.path.join(data_path, "cache.json") +cache_data = None + + +def dump_cache(): + with filelock.FileLock(cache_filename+".lock"): + with open(cache_filename, "w", encoding="utf8") as file: + json.dump(cache_data, file, indent=4) + + +def cache(subsection): + global cache_data + + if cache_data is None: + with filelock.FileLock(cache_filename+".lock"): + if not os.path.isfile(cache_filename): + cache_data = {} + else: + with open(cache_filename, "r", encoding="utf8") as file: + cache_data = json.load(file) + + s = cache_data.get(subsection, {}) + cache_data[subsection] = s + + return s + + +def calculate_sha256(filename): + hash_sha256 = hashlib.sha256() + blksize = 1024 * 1024 + + with open(filename, "rb") as f: + for chunk in iter(lambda: f.read(blksize), b""): + hash_sha256.update(chunk) + + return hash_sha256.hexdigest() + + +def sha256_from_cache(filename, title): + hashes = cache("hashes") + ondisk_mtime = os.path.getmtime(filename) + + if title not in hashes: + return None + + cached_sha256 = hashes[title].get("sha256", None) + cached_mtime = hashes[title].get("mtime", 0) + + if ondisk_mtime > cached_mtime or cached_sha256 is None: + return None + + return cached_sha256 + + +def sha256(filename, title): + hashes = cache("hashes") + + sha256_value = sha256_from_cache(filename, title) + if sha256_value is not None: + return sha256_value + + if shared.cmd_opts.no_hashing: + return None + + print(f"Calculating sha256 for {filename}: ", end='') + sha256_value = calculate_sha256(filename) + print(f"{sha256_value}") + + hashes[title] = { + "mtime": os.path.getmtime(filename), + "sha256": sha256_value, + } + + dump_cache() + + return sha256_value + + + + + diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py new file mode 100644 index 0000000000000000000000000000000000000000..49d6dcc2281daeb30f7f0f380540dd0a650248af --- /dev/null +++ b/modules/hypernetworks/hypernetwork.py @@ -0,0 +1,811 @@ +import csv +import datetime +import glob +import html +import os +import sys +import traceback +import inspect + +import modules.textual_inversion.dataset +import torch +import tqdm +from einops import rearrange, repeat +from ldm.util import default +from modules import devices, processing, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint +from modules.textual_inversion import textual_inversion, logging +from modules.textual_inversion.learn_schedule import LearnRateScheduler +from torch import einsum +from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_ + +from collections import defaultdict, deque +from statistics import stdev, mean + + +optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"} + +class HypernetworkModule(torch.nn.Module): + activation_dict = { + "linear": torch.nn.Identity, + "relu": torch.nn.ReLU, + "leakyrelu": torch.nn.LeakyReLU, + "elu": torch.nn.ELU, + "swish": torch.nn.Hardswish, + "tanh": torch.nn.Tanh, + "sigmoid": torch.nn.Sigmoid, + } + activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'}) + + def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal', + add_layer_norm=False, activate_output=False, dropout_structure=None): + super().__init__() + + self.multiplier = 1.0 + + assert layer_structure is not None, "layer_structure must not be None" + assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!" + assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!" + + linears = [] + for i in range(len(layer_structure) - 1): + + # Add a fully-connected layer + linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1]))) + + # Add an activation func except last layer + if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output): + pass + elif activation_func in self.activation_dict: + linears.append(self.activation_dict[activation_func]()) + else: + raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}') + + # Add layer normalization + if add_layer_norm: + linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) + + # Everything should be now parsed into dropout structure, and applied here. + # Since we only have dropouts after layers, dropout structure should start with 0 and end with 0. + if dropout_structure is not None and dropout_structure[i+1] > 0: + assert 0 < dropout_structure[i+1] < 1, "Dropout probability should be 0 or float between 0 and 1!" + linears.append(torch.nn.Dropout(p=dropout_structure[i+1])) + # Code explanation : [1, 2, 1] -> dropout is missing when last_layer_dropout is false. [1, 2, 2, 1] -> [0, 0.3, 0, 0], when its True, [0, 0.3, 0.3, 0]. + + self.linear = torch.nn.Sequential(*linears) + + if state_dict is not None: + self.fix_old_state_dict(state_dict) + self.load_state_dict(state_dict) + else: + for layer in self.linear: + if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm: + w, b = layer.weight.data, layer.bias.data + if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm: + normal_(w, mean=0.0, std=0.01) + normal_(b, mean=0.0, std=0) + elif weight_init == 'XavierUniform': + xavier_uniform_(w) + zeros_(b) + elif weight_init == 'XavierNormal': + xavier_normal_(w) + zeros_(b) + elif weight_init == 'KaimingUniform': + kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu') + zeros_(b) + elif weight_init == 'KaimingNormal': + kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu') + zeros_(b) + else: + raise KeyError(f"Key {weight_init} is not defined as initialization!") + self.to(devices.device) + + def fix_old_state_dict(self, state_dict): + changes = { + 'linear1.bias': 'linear.0.bias', + 'linear1.weight': 'linear.0.weight', + 'linear2.bias': 'linear.1.bias', + 'linear2.weight': 'linear.1.weight', + } + + for fr, to in changes.items(): + x = state_dict.get(fr, None) + if x is None: + continue + + del state_dict[fr] + state_dict[to] = x + + def forward(self, x): + return x + self.linear(x) * (self.multiplier if not self.training else 1) + + def trainables(self): + layer_structure = [] + for layer in self.linear: + if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm: + layer_structure += [layer.weight, layer.bias] + return layer_structure + + +#param layer_structure : sequence used for length, use_dropout : controlling boolean, last_layer_dropout : for compatibility check. +def parse_dropout_structure(layer_structure, use_dropout, last_layer_dropout): + if layer_structure is None: + layer_structure = [1, 2, 1] + if not use_dropout: + return [0] * len(layer_structure) + dropout_values = [0] + dropout_values.extend([0.3] * (len(layer_structure) - 3)) + if last_layer_dropout: + dropout_values.append(0.3) + else: + dropout_values.append(0) + dropout_values.append(0) + return dropout_values + + +class Hypernetwork: + filename = None + name = None + + def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs): + self.filename = None + self.name = name + self.layers = {} + self.step = 0 + self.sd_checkpoint = None + self.sd_checkpoint_name = None + self.layer_structure = layer_structure + self.activation_func = activation_func + self.weight_init = weight_init + self.add_layer_norm = add_layer_norm + self.use_dropout = use_dropout + self.activate_output = activate_output + self.last_layer_dropout = kwargs.get('last_layer_dropout', True) + self.dropout_structure = kwargs.get('dropout_structure', None) + if self.dropout_structure is None: + self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout) + self.optimizer_name = None + self.optimizer_state_dict = None + self.optional_info = None + + for size in enable_sizes or []: + self.layers[size] = ( + HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, + self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure), + HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init, + self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure), + ) + self.eval() + + def weights(self): + res = [] + for k, layers in self.layers.items(): + for layer in layers: + res += layer.parameters() + return res + + def train(self, mode=True): + for k, layers in self.layers.items(): + for layer in layers: + layer.train(mode=mode) + for param in layer.parameters(): + param.requires_grad = mode + + def to(self, device): + for k, layers in self.layers.items(): + for layer in layers: + layer.to(device) + + return self + + def set_multiplier(self, multiplier): + for k, layers in self.layers.items(): + for layer in layers: + layer.multiplier = multiplier + + return self + + def eval(self): + for k, layers in self.layers.items(): + for layer in layers: + layer.eval() + for param in layer.parameters(): + param.requires_grad = False + + def save(self, filename): + state_dict = {} + optimizer_saved_dict = {} + + for k, v in self.layers.items(): + state_dict[k] = (v[0].state_dict(), v[1].state_dict()) + + state_dict['step'] = self.step + state_dict['name'] = self.name + state_dict['layer_structure'] = self.layer_structure + state_dict['activation_func'] = self.activation_func + state_dict['is_layer_norm'] = self.add_layer_norm + state_dict['weight_initialization'] = self.weight_init + state_dict['sd_checkpoint'] = self.sd_checkpoint + state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name + state_dict['activate_output'] = self.activate_output + state_dict['use_dropout'] = self.use_dropout + state_dict['dropout_structure'] = self.dropout_structure + state_dict['last_layer_dropout'] = (self.dropout_structure[-2] != 0) if self.dropout_structure is not None else self.last_layer_dropout + state_dict['optional_info'] = self.optional_info if self.optional_info else None + + if self.optimizer_name is not None: + optimizer_saved_dict['optimizer_name'] = self.optimizer_name + + torch.save(state_dict, filename) + if shared.opts.save_optimizer_state and self.optimizer_state_dict: + optimizer_saved_dict['hash'] = self.shorthash() + optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict + torch.save(optimizer_saved_dict, filename + '.optim') + + def load(self, filename): + self.filename = filename + if self.name is None: + self.name = os.path.splitext(os.path.basename(filename))[0] + + state_dict = torch.load(filename, map_location='cpu') + + self.layer_structure = state_dict.get('layer_structure', [1, 2, 1]) + self.optional_info = state_dict.get('optional_info', None) + self.activation_func = state_dict.get('activation_func', None) + self.weight_init = state_dict.get('weight_initialization', 'Normal') + self.add_layer_norm = state_dict.get('is_layer_norm', False) + self.dropout_structure = state_dict.get('dropout_structure', None) + self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False) + self.activate_output = state_dict.get('activate_output', True) + self.last_layer_dropout = state_dict.get('last_layer_dropout', False) + # Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0. + if self.dropout_structure is None: + self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout) + + if shared.opts.print_hypernet_extra: + if self.optional_info is not None: + print(f" INFO:\n {self.optional_info}\n") + + print(f" Layer structure: {self.layer_structure}") + print(f" Activation function: {self.activation_func}") + print(f" Weight initialization: {self.weight_init}") + print(f" Layer norm: {self.add_layer_norm}") + print(f" Dropout usage: {self.use_dropout}" ) + print(f" Activate last layer: {self.activate_output}") + print(f" Dropout structure: {self.dropout_structure}") + + optimizer_saved_dict = torch.load(self.filename + '.optim', map_location='cpu') if os.path.exists(self.filename + '.optim') else {} + + if self.shorthash() == optimizer_saved_dict.get('hash', None): + self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None) + else: + self.optimizer_state_dict = None + if self.optimizer_state_dict: + self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW') + if shared.opts.print_hypernet_extra: + print("Loaded existing optimizer from checkpoint") + print(f"Optimizer name is {self.optimizer_name}") + else: + self.optimizer_name = "AdamW" + if shared.opts.print_hypernet_extra: + print("No saved optimizer exists in checkpoint") + + for size, sd in state_dict.items(): + if type(size) == int: + self.layers[size] = ( + HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init, + self.add_layer_norm, self.activate_output, self.dropout_structure), + HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init, + self.add_layer_norm, self.activate_output, self.dropout_structure), + ) + + self.name = state_dict.get('name', self.name) + self.step = state_dict.get('step', 0) + self.sd_checkpoint = state_dict.get('sd_checkpoint', None) + self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) + self.eval() + + def shorthash(self): + sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}') + + return sha256[0:10] if sha256 else None + + +def list_hypernetworks(path): + res = {} + for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True)): + name = os.path.splitext(os.path.basename(filename))[0] + # Prevent a hypothetical "None.pt" from being listed. + if name != "None": + res[name] = filename + return res + + +def load_hypernetwork(name): + path = shared.hypernetworks.get(name, None) + + if path is None: + return None + + hypernetwork = Hypernetwork() + + try: + hypernetwork.load(path) + except Exception: + print(f"Error loading hypernetwork {path}", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + return None + + return hypernetwork + + +def load_hypernetworks(names, multipliers=None): + already_loaded = {} + + for hypernetwork in shared.loaded_hypernetworks: + if hypernetwork.name in names: + already_loaded[hypernetwork.name] = hypernetwork + + shared.loaded_hypernetworks.clear() + + for i, name in enumerate(names): + hypernetwork = already_loaded.get(name, None) + if hypernetwork is None: + hypernetwork = load_hypernetwork(name) + + if hypernetwork is None: + continue + + hypernetwork.set_multiplier(multipliers[i] if multipliers else 1.0) + shared.loaded_hypernetworks.append(hypernetwork) + + +def find_closest_hypernetwork_name(search: str): + if not search: + return None + search = search.lower() + applicable = [name for name in shared.hypernetworks if search in name.lower()] + if not applicable: + return None + applicable = sorted(applicable, key=lambda name: len(name)) + return applicable[0] + + +def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None): + hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None) + + if hypernetwork_layers is None: + return context_k, context_v + + if layer is not None: + layer.hyper_k = hypernetwork_layers[0] + layer.hyper_v = hypernetwork_layers[1] + + context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k))) + context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v))) + return context_k, context_v + + +def apply_hypernetworks(hypernetworks, context, layer=None): + context_k = context + context_v = context + for hypernetwork in hypernetworks: + context_k, context_v = apply_single_hypernetwork(hypernetwork, context_k, context_v, layer) + + return context_k, context_v + + +def attention_CrossAttention_forward(self, x, context=None, mask=None): + h = self.heads + + q = self.to_q(x) + context = default(context, x) + + context_k, context_v = apply_hypernetworks(shared.loaded_hypernetworks, context, self) + k = self.to_k(context_k) + v = self.to_v(context_v) + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + + sim = einsum('b i d, b j d -> b i j', q, k) * self.scale + + if mask is not None: + mask = rearrange(mask, 'b ... -> b (...)') + max_neg_value = -torch.finfo(sim.dtype).max + mask = repeat(mask, 'b j -> (b h) () j', h=h) + sim.masked_fill_(~mask, max_neg_value) + + # attention, what we cannot get enough of + attn = sim.softmax(dim=-1) + + out = einsum('b i j, b j d -> b i d', attn, v) + out = rearrange(out, '(b h) n d -> b n (h d)', h=h) + return self.to_out(out) + + +def stack_conds(conds): + if len(conds) == 1: + return torch.stack(conds) + + # same as in reconstruct_multicond_batch + token_count = max([x.shape[0] for x in conds]) + for i in range(len(conds)): + if conds[i].shape[0] != token_count: + last_vector = conds[i][-1:] + last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1]) + conds[i] = torch.vstack([conds[i], last_vector_repeated]) + + return torch.stack(conds) + + +def statistics(data): + if len(data) < 2: + std = 0 + else: + std = stdev(data) + total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})" + recent_data = data[-32:] + if len(recent_data) < 2: + std = 0 + else: + std = stdev(recent_data) + recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})" + return total_information, recent_information + + +def report_statistics(loss_info:dict): + keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x])) + for key in keys: + try: + print("Loss statistics for file " + key) + info, recent = statistics(list(loss_info[key])) + print(info) + print(recent) + except Exception as e: + print(e) + + +def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None): + # Remove illegal characters from name. + name = "".join( x for x in name if (x.isalnum() or x in "._- ")) + assert name, "Name cannot be empty!" + + fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") + if not overwrite_old: + assert not os.path.exists(fn), f"file {fn} already exists" + + if type(layer_structure) == str: + layer_structure = [float(x.strip()) for x in layer_structure.split(",")] + + if use_dropout and dropout_structure and type(dropout_structure) == str: + dropout_structure = [float(x.strip()) for x in dropout_structure.split(",")] + else: + dropout_structure = [0] * len(layer_structure) + + hypernet = modules.hypernetworks.hypernetwork.Hypernetwork( + name=name, + enable_sizes=[int(x) for x in enable_sizes], + layer_structure=layer_structure, + activation_func=activation_func, + weight_init=weight_init, + add_layer_norm=add_layer_norm, + use_dropout=use_dropout, + dropout_structure=dropout_structure + ) + hypernet.save(fn) + + shared.reload_hypernetworks() + + +def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): + # images allows training previews to have infotext. Importing it at the top causes a circular import problem. + from modules import images + + save_hypernetwork_every = save_hypernetwork_every or 0 + create_image_every = create_image_every or 0 + template_file = textual_inversion.textual_inversion_templates.get(template_filename, None) + textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork") + template_file = template_file.path + + path = shared.hypernetworks.get(hypernetwork_name, None) + hypernetwork = Hypernetwork() + hypernetwork.load(path) + shared.loaded_hypernetworks = [hypernetwork] + + shared.state.job = "train-hypernetwork" + shared.state.textinfo = "Initializing hypernetwork training..." + shared.state.job_count = steps + + hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0] + filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') + + log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name) + unload = shared.opts.unload_models_when_training + + if save_hypernetwork_every > 0: + hypernetwork_dir = os.path.join(log_directory, "hypernetworks") + os.makedirs(hypernetwork_dir, exist_ok=True) + else: + hypernetwork_dir = None + + if create_image_every > 0: + images_dir = os.path.join(log_directory, "images") + os.makedirs(images_dir, exist_ok=True) + else: + images_dir = None + + checkpoint = sd_models.select_checkpoint() + + initial_step = hypernetwork.step or 0 + if initial_step >= steps: + shared.state.textinfo = "Model has already been trained beyond specified max steps" + return hypernetwork, filename + + scheduler = LearnRateScheduler(learn_rate, steps, initial_step) + + clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None + if clip_grad: + clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False) + + if shared.opts.training_enable_tensorboard: + tensorboard_writer = textual_inversion.tensorboard_setup(log_directory) + + # dataset loading may take a while, so input validations and early returns should be done before this + shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." + + pin_memory = shared.opts.pin_memory + + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight) + + if shared.opts.save_training_settings_to_txt: + saved_params = dict( + model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), + **{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]} + ) + logging.save_settings_to_file(log_directory, {**saved_params, **locals()}) + + latent_sampling_method = ds.latent_sampling_method + + dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory) + + old_parallel_processing_allowed = shared.parallel_processing_allowed + + if unload: + shared.parallel_processing_allowed = False + shared.sd_model.cond_stage_model.to(devices.cpu) + shared.sd_model.first_stage_model.to(devices.cpu) + + weights = hypernetwork.weights() + hypernetwork.train() + + # Here we use optimizer from saved HN, or we can specify as UI option. + if hypernetwork.optimizer_name in optimizer_dict: + optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate) + optimizer_name = hypernetwork.optimizer_name + else: + print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!") + optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate) + optimizer_name = 'AdamW' + + if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer. + try: + optimizer.load_state_dict(hypernetwork.optimizer_state_dict) + except RuntimeError as e: + print("Cannot resume from saved optimizer!") + print(e) + + scaler = torch.cuda.amp.GradScaler() + + batch_size = ds.batch_size + gradient_step = ds.gradient_step + # n steps = batch_size * gradient_step * n image processed + steps_per_epoch = len(ds) // batch_size // gradient_step + max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step + loss_step = 0 + _loss_step = 0 #internal + # size = len(ds.indexes) + # loss_dict = defaultdict(lambda : deque(maxlen = 1024)) + loss_logging = deque(maxlen=len(ds) * 3) # this should be configurable parameter, this is 3 * epoch(dataset size) + # losses = torch.zeros((size,)) + # previous_mean_losses = [0] + # previous_mean_loss = 0 + # print("Mean loss of {} elements".format(size)) + + steps_without_grad = 0 + + last_saved_file = "" + last_saved_image = "" + forced_filename = "" + + pbar = tqdm.tqdm(total=steps - initial_step) + try: + sd_hijack_checkpoint.add() + + for i in range((steps-initial_step) * gradient_step): + if scheduler.finished: + break + if shared.state.interrupted: + break + for j, batch in enumerate(dl): + # works as a drop_last=True for gradient accumulation + if j == max_steps_per_epoch: + break + scheduler.apply(optimizer, hypernetwork.step) + if scheduler.finished: + break + if shared.state.interrupted: + break + + if clip_grad: + clip_grad_sched.step(hypernetwork.step) + + with devices.autocast(): + x = batch.latent_sample.to(devices.device, non_blocking=pin_memory) + if use_weight: + w = batch.weight.to(devices.device, non_blocking=pin_memory) + if tag_drop_out != 0 or shuffle_tags: + shared.sd_model.cond_stage_model.to(devices.device) + c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory) + shared.sd_model.cond_stage_model.to(devices.cpu) + else: + c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory) + if use_weight: + loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step + del w + else: + loss = shared.sd_model.forward(x, c)[0] / gradient_step + del x + del c + + _loss_step += loss.item() + scaler.scale(loss).backward() + + # go back until we reach gradient accumulation steps + if (j + 1) % gradient_step != 0: + continue + loss_logging.append(_loss_step) + if clip_grad: + clip_grad(weights, clip_grad_sched.learn_rate) + + scaler.step(optimizer) + scaler.update() + hypernetwork.step += 1 + pbar.update() + optimizer.zero_grad(set_to_none=True) + loss_step = _loss_step + _loss_step = 0 + + steps_done = hypernetwork.step + 1 + + epoch_num = hypernetwork.step // steps_per_epoch + epoch_step = hypernetwork.step % steps_per_epoch + + description = f"Training hypernetwork [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}" + pbar.set_description(description) + if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0: + # Before saving, change name to match current checkpoint. + hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}' + last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt') + hypernetwork.optimizer_name = optimizer_name + if shared.opts.save_optimizer_state: + hypernetwork.optimizer_state_dict = optimizer.state_dict() + save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file) + hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory. + + + + if shared.opts.training_enable_tensorboard: + epoch_num = hypernetwork.step // len(ds) + epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1 + mean_loss = sum(loss_logging) / len(loss_logging) + textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num) + + textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, { + "loss": f"{loss_step:.7f}", + "learn_rate": scheduler.learn_rate + }) + + if images_dir is not None and steps_done % create_image_every == 0: + forced_filename = f'{hypernetwork_name}-{steps_done}' + last_saved_image = os.path.join(images_dir, forced_filename) + hypernetwork.eval() + rng_state = torch.get_rng_state() + cuda_rng_state = None + if torch.cuda.is_available(): + cuda_rng_state = torch.cuda.get_rng_state_all() + shared.sd_model.cond_stage_model.to(devices.device) + shared.sd_model.first_stage_model.to(devices.device) + + p = processing.StableDiffusionProcessingTxt2Img( + sd_model=shared.sd_model, + do_not_save_grid=True, + do_not_save_samples=True, + ) + + p.disable_extra_networks = True + + if preview_from_txt2img: + p.prompt = preview_prompt + p.negative_prompt = preview_negative_prompt + p.steps = preview_steps + p.sampler_name = sd_samplers.samplers[preview_sampler_index].name + p.cfg_scale = preview_cfg_scale + p.seed = preview_seed + p.width = preview_width + p.height = preview_height + else: + p.prompt = batch.cond_text[0] + p.steps = 20 + p.width = training_width + p.height = training_height + + preview_text = p.prompt + + processed = processing.process_images(p) + image = processed.images[0] if len(processed.images) > 0 else None + + if unload: + shared.sd_model.cond_stage_model.to(devices.cpu) + shared.sd_model.first_stage_model.to(devices.cpu) + torch.set_rng_state(rng_state) + if torch.cuda.is_available(): + torch.cuda.set_rng_state_all(cuda_rng_state) + hypernetwork.train() + if image is not None: + shared.state.assign_current_image(image) + if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images: + textual_inversion.tensorboard_add_image(tensorboard_writer, + f"Validation at epoch {epoch_num}", image, + hypernetwork.step) + last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) + last_saved_image += f", prompt: {preview_text}" + + shared.state.job_no = hypernetwork.step + + shared.state.textinfo = f""" +

+Loss: {loss_step:.7f}
+Step: {steps_done}
+Last prompt: {html.escape(batch.cond_text[0])}
+Last saved hypernetwork: {html.escape(last_saved_file)}
+Last saved image: {html.escape(last_saved_image)}
+

+""" + except Exception: + print(traceback.format_exc(), file=sys.stderr) + finally: + pbar.leave = False + pbar.close() + hypernetwork.eval() + #report_statistics(loss_dict) + sd_hijack_checkpoint.remove() + + + + filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt') + hypernetwork.optimizer_name = optimizer_name + if shared.opts.save_optimizer_state: + hypernetwork.optimizer_state_dict = optimizer.state_dict() + save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename) + + del optimizer + hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory. + shared.sd_model.cond_stage_model.to(devices.device) + shared.sd_model.first_stage_model.to(devices.device) + shared.parallel_processing_allowed = old_parallel_processing_allowed + + return hypernetwork, filename + +def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename): + old_hypernetwork_name = hypernetwork.name + old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None + old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None + try: + hypernetwork.sd_checkpoint = checkpoint.shorthash + hypernetwork.sd_checkpoint_name = checkpoint.model_name + hypernetwork.name = hypernetwork_name + hypernetwork.save(filename) + except: + hypernetwork.sd_checkpoint = old_sd_checkpoint + hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name + hypernetwork.name = old_hypernetwork_name + raise diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py new file mode 100644 index 0000000000000000000000000000000000000000..be2fd77cc76a24d0e7932c6b1fb26efcb18edcc5 --- /dev/null +++ b/modules/hypernetworks/ui.py @@ -0,0 +1,40 @@ +import html +import os +import re + +import gradio as gr +import modules.hypernetworks.hypernetwork +from modules import devices, sd_hijack, shared + +not_available = ["hardswish", "multiheadattention"] +keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available) + + +def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None): + filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure) + + return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {filename}", "" + + +def train_hypernetwork(*args): + shared.loaded_hypernetworks = [] + + assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible' + + try: + sd_hijack.undo_optimizations() + + hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args) + + res = f""" +Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps. +Hypernetwork saved to {html.escape(filename)} +""" + return res, "" + except Exception: + raise + finally: + shared.sd_model.cond_stage_model.to(devices.device) + shared.sd_model.first_stage_model.to(devices.device) + sd_hijack.apply_optimizations() + diff --git a/modules/images.py b/modules/images.py new file mode 100644 index 0000000000000000000000000000000000000000..a58573264ee61a83873b8901336be030cf826e3f --- /dev/null +++ b/modules/images.py @@ -0,0 +1,669 @@ +import datetime +import sys +import traceback + +import pytz +import io +import math +import os +from collections import namedtuple +import re + +import numpy as np +import piexif +import piexif.helper +from PIL import Image, ImageFont, ImageDraw, PngImagePlugin +from fonts.ttf import Roboto +import string +import json +import hashlib + +from modules import sd_samplers, shared, script_callbacks, errors +from modules.shared import opts, cmd_opts + +LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) + + +def image_grid(imgs, batch_size=1, rows=None): + if rows is None: + if opts.n_rows > 0: + rows = opts.n_rows + elif opts.n_rows == 0: + rows = batch_size + elif opts.grid_prevent_empty_spots: + rows = math.floor(math.sqrt(len(imgs))) + while len(imgs) % rows != 0: + rows -= 1 + else: + rows = math.sqrt(len(imgs)) + rows = round(rows) + if rows > len(imgs): + rows = len(imgs) + + cols = math.ceil(len(imgs) / rows) + + params = script_callbacks.ImageGridLoopParams(imgs, cols, rows) + script_callbacks.image_grid_callback(params) + + w, h = imgs[0].size + grid = Image.new('RGB', size=(params.cols * w, params.rows * h), color='black') + + for i, img in enumerate(params.imgs): + grid.paste(img, box=(i % params.cols * w, i // params.cols * h)) + + return grid + + +Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"]) + + +def split_grid(image, tile_w=512, tile_h=512, overlap=64): + w = image.width + h = image.height + + non_overlap_width = tile_w - overlap + non_overlap_height = tile_h - overlap + + cols = math.ceil((w - overlap) / non_overlap_width) + rows = math.ceil((h - overlap) / non_overlap_height) + + dx = (w - tile_w) / (cols - 1) if cols > 1 else 0 + dy = (h - tile_h) / (rows - 1) if rows > 1 else 0 + + grid = Grid([], tile_w, tile_h, w, h, overlap) + for row in range(rows): + row_images = [] + + y = int(row * dy) + + if y + tile_h >= h: + y = h - tile_h + + for col in range(cols): + x = int(col * dx) + + if x + tile_w >= w: + x = w - tile_w + + tile = image.crop((x, y, x + tile_w, y + tile_h)) + + row_images.append([x, tile_w, tile]) + + grid.tiles.append([y, tile_h, row_images]) + + return grid + + +def combine_grid(grid): + def make_mask_image(r): + r = r * 255 / grid.overlap + r = r.astype(np.uint8) + return Image.fromarray(r, 'L') + + mask_w = make_mask_image(np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)) + mask_h = make_mask_image(np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)) + + combined_image = Image.new("RGB", (grid.image_w, grid.image_h)) + for y, h, row in grid.tiles: + combined_row = Image.new("RGB", (grid.image_w, h)) + for x, w, tile in row: + if x == 0: + combined_row.paste(tile, (0, 0)) + continue + + combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w) + combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0)) + + if y == 0: + combined_image.paste(combined_row, (0, 0)) + continue + + combined_image.paste(combined_row.crop((0, 0, combined_row.width, grid.overlap)), (0, y), mask=mask_h) + combined_image.paste(combined_row.crop((0, grid.overlap, combined_row.width, h)), (0, y + grid.overlap)) + + return combined_image + + +class GridAnnotation: + def __init__(self, text='', is_active=True): + self.text = text + self.is_active = is_active + self.size = None + + +def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0): + def wrap(drawing, text, font, line_length): + lines = [''] + for word in text.split(): + line = f'{lines[-1]} {word}'.strip() + if drawing.textlength(line, font=font) <= line_length: + lines[-1] = line + else: + lines.append(word) + return lines + + def get_font(fontsize): + try: + return ImageFont.truetype(opts.font or Roboto, fontsize) + except Exception: + return ImageFont.truetype(Roboto, fontsize) + + def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize): + for i, line in enumerate(lines): + fnt = initial_fnt + fontsize = initial_fontsize + while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0: + fontsize -= 1 + fnt = get_font(fontsize) + drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center") + + if not line.is_active: + drawing.line((draw_x - line.size[0] // 2, draw_y + line.size[1] // 2, draw_x + line.size[0] // 2, draw_y + line.size[1] // 2), fill=color_inactive, width=4) + + draw_y += line.size[1] + line_spacing + + fontsize = (width + height) // 25 + line_spacing = fontsize // 2 + + fnt = get_font(fontsize) + + color_active = (0, 0, 0) + color_inactive = (153, 153, 153) + + pad_left = 0 if sum([sum([len(line.text) for line in lines]) for lines in ver_texts]) == 0 else width * 3 // 4 + + cols = im.width // width + rows = im.height // height + + assert cols == len(hor_texts), f'bad number of horizontal texts: {len(hor_texts)}; must be {cols}' + assert rows == len(ver_texts), f'bad number of vertical texts: {len(ver_texts)}; must be {rows}' + + calc_img = Image.new("RGB", (1, 1), "white") + calc_d = ImageDraw.Draw(calc_img) + + for texts, allowed_width in zip(hor_texts + ver_texts, [width] * len(hor_texts) + [pad_left] * len(ver_texts)): + items = [] + texts + texts.clear() + + for line in items: + wrapped = wrap(calc_d, line.text, fnt, allowed_width) + texts += [GridAnnotation(x, line.is_active) for x in wrapped] + + for line in texts: + bbox = calc_d.multiline_textbbox((0, 0), line.text, font=fnt) + line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1]) + line.allowed_width = allowed_width + + hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts] + ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in ver_texts] + + pad_top = 0 if sum(hor_text_heights) == 0 else max(hor_text_heights) + line_spacing * 2 + + result = Image.new("RGB", (im.width + pad_left + margin * (cols-1), im.height + pad_top + margin * (rows-1)), "white") + + for row in range(rows): + for col in range(cols): + cell = im.crop((width * col, height * row, width * (col+1), height * (row+1))) + result.paste(cell, (pad_left + (width + margin) * col, pad_top + (height + margin) * row)) + + d = ImageDraw.Draw(result) + + for col in range(cols): + x = pad_left + (width + margin) * col + width / 2 + y = pad_top / 2 - hor_text_heights[col] / 2 + + draw_texts(d, x, y, hor_texts[col], fnt, fontsize) + + for row in range(rows): + x = pad_left / 2 + y = pad_top + (height + margin) * row + height / 2 - ver_text_heights[row] / 2 + + draw_texts(d, x, y, ver_texts[row], fnt, fontsize) + + return result + + +def draw_prompt_matrix(im, width, height, all_prompts, margin=0): + prompts = all_prompts[1:] + boundary = math.ceil(len(prompts) / 2) + + prompts_horiz = prompts[:boundary] + prompts_vert = prompts[boundary:] + + hor_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_horiz)] for pos in range(1 << len(prompts_horiz))] + ver_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_vert)] for pos in range(1 << len(prompts_vert))] + + return draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin) + + +def resize_image(resize_mode, im, width, height, upscaler_name=None): + """ + Resizes an image with the specified resize_mode, width, and height. + + Args: + resize_mode: The mode to use when resizing the image. + 0: Resize the image to the specified width and height. + 1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess. + 2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image. + im: The image to resize. + width: The width to resize the image to. + height: The height to resize the image to. + upscaler_name: The name of the upscaler to use. If not provided, defaults to opts.upscaler_for_img2img. + """ + + upscaler_name = upscaler_name or opts.upscaler_for_img2img + + def resize(im, w, h): + if upscaler_name is None or upscaler_name == "None" or im.mode == 'L': + return im.resize((w, h), resample=LANCZOS) + + scale = max(w / im.width, h / im.height) + + if scale > 1.0: + upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name] + assert len(upscalers) > 0, f"could not find upscaler named {upscaler_name}" + + upscaler = upscalers[0] + im = upscaler.scaler.upscale(im, scale, upscaler.data_path) + + if im.width != w or im.height != h: + im = im.resize((w, h), resample=LANCZOS) + + return im + + if resize_mode == 0: + res = resize(im, width, height) + + elif resize_mode == 1: + ratio = width / height + src_ratio = im.width / im.height + + src_w = width if ratio > src_ratio else im.width * height // im.height + src_h = height if ratio <= src_ratio else im.height * width // im.width + + resized = resize(im, src_w, src_h) + res = Image.new("RGB", (width, height)) + res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) + + else: + ratio = width / height + src_ratio = im.width / im.height + + src_w = width if ratio < src_ratio else im.width * height // im.height + src_h = height if ratio >= src_ratio else im.height * width // im.width + + resized = resize(im, src_w, src_h) + res = Image.new("RGB", (width, height)) + res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) + + if ratio < src_ratio: + fill_height = height // 2 - src_h // 2 + res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) + res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h)) + elif ratio > src_ratio: + fill_width = width // 2 - src_w // 2 + res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) + res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0)) + + return res + + +invalid_filename_chars = '<>:"/\\|?*\n' +invalid_filename_prefix = ' ' +invalid_filename_postfix = ' .' +re_nonletters = re.compile(r'[\s' + string.punctuation + ']+') +re_pattern = re.compile(r"(.*?)(?:\[([^\[\]]+)\]|$)") +re_pattern_arg = re.compile(r"(.*)<([^>]*)>$") +max_filename_part_length = 128 + + +def sanitize_filename_part(text, replace_spaces=True): + if text is None: + return None + + if replace_spaces: + text = text.replace(' ', '_') + + text = text.translate({ord(x): '_' for x in invalid_filename_chars}) + text = text.lstrip(invalid_filename_prefix)[:max_filename_part_length] + text = text.rstrip(invalid_filename_postfix) + return text + + +class FilenameGenerator: + replacements = { + 'seed': lambda self: self.seed if self.seed is not None else '', + 'steps': lambda self: self.p and self.p.steps, + 'cfg': lambda self: self.p and self.p.cfg_scale, + 'width': lambda self: self.image.width, + 'height': lambda self: self.image.height, + 'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False), + 'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False), + 'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash), + 'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.model_name, replace_spaces=False), + 'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'), + 'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime], [datetime