import sys import cv2 import torch import numpy as np import streamlit as st from PIL import Image from omegaconf import OmegaConf from einops import repeat from streamlit_drawable_canvas import st_canvas from imwatermark import WatermarkEncoder from ldm.models.diffusion.ddim import DDIMSampler from ldm.util import instantiate_from_config torch.set_grad_enabled(False) def put_watermark(img, wm_encoder=None): if wm_encoder is not None: img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) img = wm_encoder.encode(img, 'dwtDct') img = Image.fromarray(img[:, :, ::-1]) return img @st.cache(allow_output_mutation=True) def initialize_model(config, ckpt): config = OmegaConf.load(config) model = instantiate_from_config(config.model) model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = model.to(device) sampler = DDIMSampler(model) return sampler def make_batch_sd( image, mask, txt, device, num_samples=1): image = np.array(image.convert("RGB")) image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 mask = np.array(mask.convert("L")) mask = mask.astype(np.float32) / 255.0 mask = mask[None, None] mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 mask = torch.from_numpy(mask) masked_image = image * (mask < 0.5) batch = { "image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples), "txt": num_samples * [txt], "mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples), "masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples), } return batch def inpaint(sampler, image, mask, prompt, seed, scale, ddim_steps, num_samples=1, w=512, h=512, eta=1.): device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = sampler.model print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") wm = "SDV2" wm_encoder = WatermarkEncoder() wm_encoder.set_watermark('bytes', wm.encode('utf-8')) prng = np.random.RandomState(seed) start_code = prng.randn(num_samples, 4, h // 8, w // 8) start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32) with torch.no_grad(), \ torch.autocast("cuda"): batch = make_batch_sd(image, mask, txt=prompt, device=device, num_samples=num_samples) c = model.cond_stage_model.encode(batch["txt"]) c_cat = list() for ck in model.concat_keys: cc = batch[ck].float() if ck != model.masked_image_key: bchw = [num_samples, 4, h // 8, w // 8] cc = torch.nn.functional.interpolate(cc, size=bchw[-2:]) else: cc = model.get_first_stage_encoding(model.encode_first_stage(cc)) c_cat.append(cc) c_cat = torch.cat(c_cat, dim=1) # cond cond = {"c_concat": [c_cat], "c_crossattn": [c]} # uncond cond uc_cross = model.get_unconditional_conditioning(num_samples, "") uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]} shape = [model.channels, h // 8, w // 8] samples_cfg, intermediates = sampler.sample( ddim_steps, num_samples, shape, cond, verbose=False, eta=eta, unconditional_guidance_scale=scale, unconditional_conditioning=uc_full, x_T=start_code, ) x_samples_ddim = model.decode_first_stage(samples_cfg) result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255 return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result] def run(): st.title("Stable Diffusion Inpainting") sampler = initialize_model(sys.argv[1], sys.argv[2]) image = st.file_uploader("Image", ["jpg", "png"]) if image: image = Image.open(image) w, h = image.size print(f"loaded input image of size ({w}, {h})") width, height = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32 image = image.resize((width, height)) prompt = st.text_input("Prompt") seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0) num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1) scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=10., step=0.1) ddim_steps = st.slider("DDIM Steps", min_value=0, max_value=50, value=50, step=1) eta = st.sidebar.number_input("eta (DDIM)", value=0., min_value=0., max_value=1.) fill_color = "rgba(255, 255, 255, 0.0)" stroke_width = st.number_input("Brush Size", value=64, min_value=1, max_value=100) stroke_color = "rgba(255, 255, 255, 1.0)" bg_color = "rgba(0, 0, 0, 1.0)" drawing_mode = "freedraw" st.write("Canvas") st.caption( "Draw a mask to inpaint, then click the 'Send to Streamlit' button (bottom left, with an arrow on it).") canvas_result = st_canvas( fill_color=fill_color, stroke_width=stroke_width, stroke_color=stroke_color, background_color=bg_color, background_image=image, update_streamlit=False, height=height, width=width, drawing_mode=drawing_mode, key="canvas", ) if canvas_result: mask = canvas_result.image_data mask = mask[:, :, -1] > 0 if mask.sum() > 0: mask = Image.fromarray(mask) result = inpaint( sampler=sampler, image=image, mask=mask, prompt=prompt, seed=seed, scale=scale, ddim_steps=ddim_steps, num_samples=num_samples, h=height, w=width, eta=eta ) st.write("Inpainted") for image in result: st.image(image, output_format='PNG') if __name__ == "__main__": run()