|
import logging |
|
logging.getLogger("transformers.tokenization_utils_base").setLevel(logging.ERROR) |
|
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR) |
|
logging.basicConfig( |
|
format='[%(asctime)s] %(message)s', |
|
level=logging.INFO, |
|
datefmt='%Y-%m-%d %H:%M:%S' |
|
) |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
def main(): |
|
model_name = 'tiiuae/falcon-7b-instruct' |
|
|
|
logging.info(f'Getting pretrained model {model_name}') |
|
model = AutoModelForCausalLM.from_pretrained(model_name).to('cuda') |
|
|
|
logging.info(f'Getting pretrained tokenizer {model_name}') |
|
tokenizer = AutoTokenizer.from_pretrained(model_name).to('cuda') |
|
|
|
logging.info('Tokenizing input') |
|
inputs = tokenizer.encode('Where was Emmanuel Macron born?', return_tensors = 'pt').to('cuda') |
|
|
|
logging.info('Generating output') |
|
outputs = model.generate(inputs, max_length = 300, num_return_sequences = 1) |
|
|
|
logging.info('Decoding result') |
|
result = tokenizer.decode(outputs[0], skip_special_tokens = True) |
|
|
|
print(result) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|