Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags: []
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
@@ -13,24 +13,39 @@ Persian spelling correction model based on LLama3.1 instruct. This model was tra
|
|
13 |
### Model Description
|
14 |
|
15 |
Base_prompt = """You are tasked with correcting spelling mistakes in the queries that users submitted to a Persian marketplace.
|
|
|
16 |
Output the corrected query in the following JSON format:
|
|
|
17 |
- If the input requires correction, use:
|
|
|
18 |
{"correction": "<corrected version of the query>"}
|
|
|
19 |
- If the input is correct, use:
|
|
|
|
|
20 |
"correction": ""}
|
|
|
|
|
21 |
Here are some examples:
|
|
|
22 |
"query": "ندل چسبی زنانه" Your answer: {"correction": "صندل چسبی زنانه"}
|
|
|
23 |
"query": "بادکنک جشن تواد" Your answer: {"correction": "بادکنک جشن تولد"}
|
|
|
24 |
"query": "صندلی بادی" Your answer: {"correction": ""}\n"""
|
25 |
|
|
|
|
|
26 |
## Uses
|
27 |
|
28 |
It should be used for spelling correction in a setting with Persian language around.
|
|
|
29 |
### Direct Use
|
30 |
|
|
|
31 |
//output structring
|
32 |
def extract_json(text):
|
33 |
-
try:
|
34 |
correction = None
|
35 |
pos = 0
|
36 |
decoder = json.JSONDecoder()
|
@@ -76,10 +91,12 @@ with torch.no_grad():
|
|
76 |
)
|
77 |
output = tokenizer.decode(output_tokens[0][prompt_length:], skip_special_tokens=True)
|
78 |
return extract_json(output)
|
79 |
-
|
80 |
|
81 |
## Model Card Contact
|
82 |
|
83 |
Majid F. Sadi
|
|
|
84 | |
|
|
85 |
https://www.linkedin.com/in/mfsadi/
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags: [spell_correction]
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
|
|
13 |
### Model Description
|
14 |
|
15 |
Base_prompt = """You are tasked with correcting spelling mistakes in the queries that users submitted to a Persian marketplace.
|
16 |
+
|
17 |
Output the corrected query in the following JSON format:
|
18 |
+
|
19 |
- If the input requires correction, use:
|
20 |
+
|
21 |
{"correction": "<corrected version of the query>"}
|
22 |
+
|
23 |
- If the input is correct, use:
|
24 |
+
|
25 |
+
|
26 |
"correction": ""}
|
27 |
+
|
28 |
+
|
29 |
Here are some examples:
|
30 |
+
|
31 |
"query": "ندل چسبی زنانه" Your answer: {"correction": "صندل چسبی زنانه"}
|
32 |
+
|
33 |
"query": "بادکنک جشن تواد" Your answer: {"correction": "بادکنک جشن تولد"}
|
34 |
+
|
35 |
"query": "صندلی بادی" Your answer: {"correction": ""}\n"""
|
36 |
|
37 |
+
|
38 |
+
|
39 |
## Uses
|
40 |
|
41 |
It should be used for spelling correction in a setting with Persian language around.
|
42 |
+
|
43 |
### Direct Use
|
44 |
|
45 |
+
```python
|
46 |
//output structring
|
47 |
def extract_json(text):
|
48 |
+
try:
|
49 |
correction = None
|
50 |
pos = 0
|
51 |
decoder = json.JSONDecoder()
|
|
|
91 |
)
|
92 |
output = tokenizer.decode(output_tokens[0][prompt_length:], skip_special_tokens=True)
|
93 |
return extract_json(output)
|
94 |
+
```
|
95 |
|
96 |
## Model Card Contact
|
97 |
|
98 |
Majid F. Sadi
|
99 |
+
|
100 | |
101 |
+
|
102 |
https://www.linkedin.com/in/mfsadi/
|