mgfrantz commited on
Commit
788c358
1 Parent(s): 455601b

Trained LunarLander-v2-PPO-0 for an additional 1e6 steps

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 290.29 +/- 15.66
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 294.61 +/- 18.69
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa57b225b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa57b225b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa57b225c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa57b225cb0>", "_build": "<function ActorCriticPolicy._build at 0x7fa57b225d40>", "forward": "<function ActorCriticPolicy.forward at 0x7fa57b225dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa57b225e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa57b225ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa57b225f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa57b22b050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa57b22b0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa57b1fc240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652225059.4910655, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEAjSb7C4kQ/sCr7vB6sMr88UQa/3hTzPQAAAAAAAAAAmknsO+hNmj0NhR++9AIPv1e4x702ihy+AAAAAAAAAAAzv2E94aRbPxTbwz1+kFS/HBICPppYCD0AAAAAAAAAAM3ezjzkSX0+ugwju0BVML9bQkQ9ttwZvQAAAAAAAAAAZsRzvFyzAbqzvsW20wJdso/Lv7fbr+01AACAPwAAgD8AaYc8cXFrux1q071U7CG+Y2CTvKQumD8AAIA/AAAAAObiZ70W/Bk9Gl+jPo922r6d1rI9OEl4PgAAAAAAAAAA5uymPfaQwj8jCNw+nbrRPWz+ET5esus+AAAAAAAAAABmNqm7ruGwunAwDDpicq01FSWEORo7ILkAAIA/AACAP82YkryFU8e5I+IQtC2Diq/j8Ik64NuVMwAAgD8AAIA/TfQDPfVHtT8a5AM/onzYvBB+HbzCBX49AAAAAAAAAAD6pSg+N9iDPqbYyr7OFBm/ziMJPlAat74AAAAAAAAAAM2FlzzhMIS60oMBs4sC8y5fAri6kpWzMwAAgD8AAIA/APo7vOhMi7yag+C8MKMvPUsxcT2Goms8AACAPwAAgD9QGXK+NQSPP2pznL7ujfG+g+Itv7iknr4AAAAAAAAAAGbGGzp7/rC6MjiKNja4hDFGImI6fa6jtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdAtdiQAdckCUhpRSlIwBbJRLuowBdJRHQNtRtfBi1At1fZQoaAZoCWgPQwhXW7G/rGZzQJSGlFKUaBVLvmgWR0DbUbbvZyuIdX2UKGgGaAloD0MIZ3v0hntYckCUhpRSlGgVS61oFkdA21G3UmD15HV9lChoBmgJaA9DCGkbf6Kyp29AlIaUUpRoFUuLaBZHQNtRuADJU5x1fZQoaAZoCWgPQwiPM03YPr5yQJSGlFKUaBVLsGgWR0DbUbiCXhOydX2UKGgGaAloD0MIaRt/ojIac0CUhpRSlGgVS6doFkdA21G5dK/VRXV9lChoBmgJaA9DCBLYnIMnjHJAlIaUUpRoFUu1aBZHQNtRvuBQN1B1fZQoaAZoCWgPQwjAWUqW0yNzQJSGlFKUaBVLp2gWR0DbUcV+hGpddX2UKGgGaAloD0MIV7H4TWGcc0CUhpRSlGgVS6NoFkdA21HHxVAAyXV9lChoBmgJaA9DCOOmBprP93NAlIaUUpRoFUutaBZHQNtRySbH6uZ1fZQoaAZoCWgPQwhYx/FDZZdyQJSGlFKUaBVLo2gWR0DbUct3Tuv2dX2UKGgGaAloD0MIaf8DrNVhcUCUhpRSlGgVS7RoFkdA21HMZtelbnV9lChoBmgJaA9DCPyp8dJNY3BAlIaUUpRoFUuiaBZHQNtRz/D+BH11fZQoaAZoCWgPQwgaNsr6zQJxQJSGlFKUaBVLomgWR0DbUdJeWv8qdX2UKGgGaAloD0MIPGnhsso1ckCUhpRSlGgVS61oFkdA21HUFPznR3V9lChoBmgJaA9DCL9H/fVKY3NAlIaUUpRoFUudaBZHQNtR3fMW43F1fZQoaAZoCWgPQwguNxjqMM1yQJSGlFKUaBVLlWgWR0DbUeDAbhm5dX2UKGgGaAloD0MIUG1wInotckCUhpRSlGgVS6loFkdA21HnLvkRz3V9lChoBmgJaA9DCEzGMZL9v3NAlIaUUpRoFUuraBZHQNtR6RQizLR1fZQoaAZoCWgPQwgyyF2EKdVzQJSGlFKUaBVLr2gWR0DbUenAxi5NdX2UKGgGaAloD0MIPx2PGehodECUhpRSlGgVS7BoFkdA21HrdiUgS3V9lChoBmgJaA9DCK2m64muJnRAlIaUUpRoFUu9aBZHQNtR67pqynl1fZQoaAZoCWgPQwhU/rW8Mg1xQJSGlFKUaBVLn2gWR0DbUex4LThHdX2UKGgGaAloD0MIhzO/moPzcUCUhpRSlGgVS5NoFkdA21HxP2f03HV9lChoBmgJaA9DCAYsuYpF4XBAlIaUUpRoFUuJaBZHQNtR9kZaV2R1fZQoaAZoCWgPQwhM4qyIGvpzQJSGlFKUaBVLt2gWR0DbUfj30wrUdX2UKGgGaAloD0MITtNnB9wxckCUhpRSlGgVS6xoFkdA21H5SfUWmHV9lChoBmgJaA9DCDihEAFHknJAlIaUUpRoFUukaBZHQNtR+lEmY0F1fZQoaAZoCWgPQwhDHOvitkluQJSGlFKUaBVLsWgWR0DbUfy9eyAydX2UKGgGaAloD0MIHXIz3ACJckCUhpRSlGgVS51oFkdA21H+MQVbinV9lChoBmgJaA9DCHkFoiel3HJAlIaUUpRoFUutaBZHQNtSA6IvalF1fZQoaAZoCWgPQwi4QILih39xQJSGlFKUaBVLkGgWR0DbUgfROUMYdX2UKGgGaAloD0MIPrFOle99c0CUhpRSlGgVS7hoFkdA21IQaK1og3V9lChoBmgJaA9DCPBN02fHrnBAlIaUUpRoFUubaBZHQNtSEpl4C6p1fZQoaAZoCWgPQwiqLAq7KLVyQJSGlFKUaBVLrWgWR0DbUhYlByCGdX2UKGgGaAloD0MIZhGKrSCdcECUhpRSlGgVS5xoFkdA21IWZH/cWXV9lChoBmgJaA9DCPhtiPEaNHBAlIaUUpRoFUugaBZHQNtSFtDQZ4x1fZQoaAZoCWgPQwiuuaP/ZSdzQJSGlFKUaBVLrWgWR0DbUhhvNu+AdX2UKGgGaAloD0MI5sx2hb5IckCUhpRSlGgVS7JoFkdA21IbS2Yv4HV9lChoBmgJaA9DCEjBU8iV9XNAlIaUUpRoFUuiaBZHQNtSHNrftQd1fZQoaAZoCWgPQwiJXHAGP5VxQJSGlFKUaBVLlWgWR0DbUiCvNeMRdX2UKGgGaAloD0MIfnIUIEpAcUCUhpRSlGgVS5VoFkdA21Ih6w+t83V9lChoBmgJaA9DCPBMaJKY/3FAlIaUUpRoFUu2aBZHQNtSJusxO+J1fZQoaAZoCWgPQwgxJZLopWNyQJSGlFKUaBVLomgWR0DbUifTXrdFdX2UKGgGaAloD0MItKolHeVyc0CUhpRSlGgVS7toFkdA21IqvTPSlXV9lChoBmgJaA9DCJoLXB6rQXFAlIaUUpRoFUuraBZHQNtSK7J4jbB1fZQoaAZoCWgPQwgGZ/D3y4VyQJSGlFKUaBVLh2gWR0DbUiwI0IkadX2UKGgGaAloD0MIP5EnSRc3cUCUhpRSlGgVS55oFkdA21IuCGvfTHV9lChoBmgJaA9DCOEIUik26nBAlIaUUpRoFUuFaBZHQNtSOMjRlYl1fZQoaAZoCWgPQwgHtkqweH9zQJSGlFKUaBVLnWgWR0DbUjn9AHE/dX2UKGgGaAloD0MIGcdI9ggAckCUhpRSlGgVS6VoFkdA21I+WdVebHV9lChoBmgJaA9DCFT9SufDqU9AlIaUUpRoFUteaBZHQNtSQPrnkkt1fZQoaAZoCWgPQwgX8DLDxjBxQJSGlFKUaBVLjmgWR0DbUkCzVtoBdX2UKGgGaAloD0MINq0UAjkUc0CUhpRSlGgVS6BoFkdA21JA+z+m33V9lChoBmgJaA9DCBb8NsT4t3FAlIaUUpRoFUumaBZHQNtSQiHqNZN1fZQoaAZoCWgPQwj2twTgH11xQJSGlFKUaBVLm2gWR0DbUkW3jMmndX2UKGgGaAloD0MIp+hILj9/ckCUhpRSlGgVS7xoFkdA21JJ3n6l+HV9lChoBmgJaA9DCJolAWoqlnBAlIaUUpRoFUufaBZHQNtSS/9YOlR1fZQoaAZoCWgPQwihvmVOVxdyQJSGlFKUaBVLr2gWR0DbUk8C1Z1WdX2UKGgGaAloD0MIBmSvd398cECUhpRSlGgVS5JoFkdA21JRsz2vjnV9lChoBmgJaA9DCG1zY3pCnnNAlIaUUpRoFUunaBZHQNtSU2itaIN1fZQoaAZoCWgPQwhrZFdaRhNxQJSGlFKUaBVLk2gWR0DbUlVMHryEdX2UKGgGaAloD0MIfJxpwnYRckCUhpRSlGgVS59oFkdA21JWVUdaMnV9lChoBmgJaA9DCPENhc+Wq3FAlIaUUpRoFUulaBZHQNtSV5aNdZ91fZQoaAZoCWgPQwhJnBVRU45yQJSGlFKUaBVLm2gWR0DbUmOdkJ8fdX2UKGgGaAloD0MIEqW9wZcgckCUhpRSlGgVS6NoFkdA21Jku76HkHV9lChoBmgJaA9DCNk+5C2XenBAlIaUUpRoFUuSaBZHQNtSaCN4qw11fZQoaAZoCWgPQwh1VgvsMfxxQJSGlFKUaBVLnGgWR0DbUmhTm4iHdX2UKGgGaAloD0MItMwiFNvNckCUhpRSlGgVS6VoFkdA21JtAH3UQXV9lChoBmgJaA9DCB79L9eiZXFAlIaUUpRoFUufaBZHQNtScKAavRt1fZQoaAZoCWgPQwigGFkyB2NyQJSGlFKUaBVLr2gWR0DbUnFkOI69dX2UKGgGaAloD0MI/0EkQ85Tc0CUhpRSlGgVS7loFkdA21Jy4QBgeHV9lChoBmgJaA9DCACuZMcGDHNAlIaUUpRoFUudaBZHQNtSdHscABF1fZQoaAZoCWgPQwhPyw9cZQZxQJSGlFKUaBVLjmgWR0DbUnhXbM5fdX2UKGgGaAloD0MIUyRfCaSRc0CUhpRSlGgVS7BoFkdA21J71BMSK3V9lChoBmgJaA9DCP58W7BUeW9AlIaUUpRoFUuRaBZHQNtSfNWyTpx1fZQoaAZoCWgPQwhpVyHl5xtwQJSGlFKUaBVLmGgWR0DbUnzE4vOAdX2UKGgGaAloD0MILZW3Ixx2c0CUhpRSlGgVS61oFkdA21J9925hB3V9lChoBmgJaA9DCMgHPZvVOHFAlIaUUpRoFUufaBZHQNtSgU2xY7t1fZQoaAZoCWgPQwgg8SvW8ENzQJSGlFKUaBVLt2gWR0DbUojdJrckdX2UKGgGaAloD0MIVDiCVMpIcUCUhpRSlGgVS4hoFkdA21KMkAxSHnV9lChoBmgJaA9DCGfXvRXJX3FAlIaUUpRoFUuaaBZHQNtSkh0ZFXt1fZQoaAZoCWgPQwj+mxcnfvdyQJSGlFKUaBVLvGgWR0DbUph2Qnx8dX2UKGgGaAloD0MIij+KOrNtdECUhpRSlGgVS8JoFkdA21KZH1e0HHV9lChoBmgJaA9DCAnh0cZReHBAlIaUUpRoFUuZaBZHQNtSmwBYFJR1fZQoaAZoCWgPQwjM7PMYJf5xQJSGlFKUaBVLpWgWR0DbUprDEWIodX2UKGgGaAloD0MIxeQNMDNecUCUhpRSlGgVS5doFkdA21KbNVBD5XV9lChoBmgJaA9DCJlho6wfV3NAlIaUUpRoFUudaBZHQNtSniXD3uh1fZQoaAZoCWgPQwh+ObNd4W1yQJSGlFKUaBVLjmgWR0DbUqLb8FY/dX2UKGgGaAloD0MIa9WuCemgckCUhpRSlGgVS61oFkdA21Kj0WuX/3V9lChoBmgJaA9DCAJGlzfH03NAlIaUUpRoFUuzaBZHQNtSqbedkJ91fZQoaAZoCWgPQwjc1hael1dxQJSGlFKUaBVLp2gWR0DbUqsPmPo3dX2UKGgGaAloD0MIPdaMDDI+ckCUhpRSlGgVS65oFkdA21Ks+23KCHV9lChoBmgJaA9DCFVP5h+9+3FAlIaUUpRoFUuvaBZHQNtSrrr5ZbJ1fZQoaAZoCWgPQwhZorPM4sNyQJSGlFKUaBVLoGgWR0DbUrZ03fhudX2UKGgGaAloD0MIjPhOzDp5c0CUhpRSlGgVS8NoFkdA21K4LU1AJXV9lChoBmgJaA9DCJEqildZIHFAlIaUUpRoFUuUaBZHQNtSu8XenAJ1fZQoaAZoCWgPQwgGDf0TXPxyQJSGlFKUaBVLqmgWR0DbUrzHdXT3dX2UKGgGaAloD0MIZM3IILdacECUhpRSlGgVS5poFkdA21LDKg7HQ3V9lChoBmgJaA9DCGpOXmQCjnFAlIaUUpRoFUuPaBZHQNtSxcCkoF51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 6448, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2c4ab5f710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2c4ab5f7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2c4ab5f830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2c4ab5f8c0>", "_build": "<function ActorCriticPolicy._build at 0x7f2c4ab5f950>", "forward": "<function ActorCriticPolicy.forward at 0x7f2c4ab5f9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2c4ab5fa70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2c4ab5fb00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2c4ab5fb90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2c4ab5fc20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2c4ab5fcb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2c4ab2d660>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652286512.2623978, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACw6LpseuO7UjhaPZxGcD3afxS9QcUVPAAAgD8AAIA/jQPRPeCjoT//V8w+sqwUvx9Jij6ynI8+AAAAAAAAAABzlaI9FLi1P1/VLD+0fca94Pa1O22dRz4AAAAAAAAAADORMTwfm+y7GP92PTkhbDtmxD+96wZoPAAAgD8AAIA/AOxnPQVD07suBaG+mU+FvnO8m7yyagc/AACAPwAAgD9mHiE79lRLusxHhzme4lI0GYWRu5GCn7gAAIA/AACAP6oRU77/HhQ/CEL8PXlIJr83gtu+c0RPPgAAAAAAAAAAGlIrvUsTAT9WLic978JQv8QIsL20EJY9AAAAAAAAAACaiui9yoFSPxMDA767CEW/TXOvvjy+xrwAAAAAAAAAAADQkjuPMl+6d+YiOtWuPjWu/Qw7K8M+uQAAgD8AAIA/mtMYPaHno7zNRTa+W564vOzkLDzIPOi9AACAPwAAgD+NnIe9SeqpP6HZM78bnAS/hcODPAs9170AAAAAAAAAAJrrRz1IMYy6bu7xt6/I0LL1QQ273J4MNwAAgD8AAIA/mruRPFwjbbrEMC+0ZFUKrwKH1znujq0zAACAPwAAgD/NdlK9FAyhusiWQTt8g5w2tZL+OTeGkzUAAIA/AACAP2bVsTwKQCW7KxrnvNtNUzykV0g8h+s4vQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIECOER9t4ckCUhpRSlIwBbJRLv4wBdJRHQKWsEWrOqvN1fZQoaAZoCWgPQwjEI/Hy9MFyQJSGlFKUaBVLt2gWR0ClrBnGS6lMdX2UKGgGaAloD0MI6LzGLpF6ckCUhpRSlGgVS7VoFkdApaw3pbD/EXV9lChoBmgJaA9DCKuTMxQ38nJAlIaUUpRoFUuZaBZHQKWsZiCrcTJ1fZQoaAZoCWgPQwgsDmd+NZBxQJSGlFKUaBVLnWgWR0ClrHvHLidbdX2UKGgGaAloD0MIoiQk0jaHcUCUhpRSlGgVS5VoFkdApbVm6iCaqnV9lChoBmgJaA9DCLKDSlzHYHNAlIaUUpRoFUujaBZHQKW1ar7wazh1fZQoaAZoCWgPQwi13m+0Yw5zQJSGlFKUaBVLuWgWR0CltZ3kYGdJdX2UKGgGaAloD0MI36XUJSNhdECUhpRSlGgVS7xoFkdApbWzVrhzeXV9lChoBmgJaA9DCDo/xXEgIXNAlIaUUpRoFUu7aBZHQKW1xspG4I91fZQoaAZoCWgPQwjWx0PfHYxzQJSGlFKUaBVLpWgWR0Cltd+HJtBOdX2UKGgGaAloD0MIBp/m5AWbc0CUhpRSlGgVS7NoFkdApbXgiFCb+nV9lChoBmgJaA9DCMaGbvYHB3NAlIaUUpRoFUu3aBZHQKW14zhP0qZ1fZQoaAZoCWgPQwguVWmL6wR0QJSGlFKUaBVLxGgWR0CltiPTw2ETdX2UKGgGaAloD0MIWHGqtbDLc0CUhpRSlGgVS7poFkdApbYm9WZJCnV9lChoBmgJaA9DCF392CS/7nJAlIaUUpRoFUuWaBZHQKW2NaK1og51fZQoaAZoCWgPQwiGOUGbHNdxQJSGlFKUaBVLrWgWR0Cltk0lzEJjdX2UKGgGaAloD0MIi1JCsGqfckCUhpRSlGgVS6RoFkdApbZdLHuJDXV9lChoBmgJaA9DCLZpbK/FlnFAlIaUUpRoFUujaBZHQKW2pdP+GXZ1fZQoaAZoCWgPQwiuoGmJVUt0QJSGlFKUaBVLwmgWR0Cltr6JQ+EAdX2UKGgGaAloD0MIpztPPKcKdECUhpRSlGgVS6ZoFkdApbbXxBmf5HV9lChoBmgJaA9DCGsQ5nYvKnFAlIaUUpRoFUuoaBZHQKW24A93bEh1fZQoaAZoCWgPQwiUiVsFcRhzQJSGlFKUaBVLtGgWR0CltuShBZ6ldX2UKGgGaAloD0MIsktUb02HcUCUhpRSlGgVS5xoFkdApbcIaJhvznV9lChoBmgJaA9DCPG4qBZRu3NAlIaUUpRoFUuwaBZHQKW3H7BO58V1fZQoaAZoCWgPQwhgj4mUpntyQJSGlFKUaBVLl2gWR0CltyUTcqOMdX2UKGgGaAloD0MIppcYyzSzcECUhpRSlGgVS6ZoFkdApbcuX/o7m3V9lChoBmgJaA9DCJkNMskI7HJAlIaUUpRoFUucaBZHQKW3MF36hxp1fZQoaAZoCWgPQwjOUUfH1XF0QJSGlFKUaBVLqWgWR0Clt08vM8oydX2UKGgGaAloD0MIraOqCeLJckCUhpRSlGgVS71oFkdApbfIAEMb33V9lChoBmgJaA9DCCKI83BC+HNAlIaUUpRoFUu7aBZHQKW31sk6cRV1fZQoaAZoCWgPQwjg9gSJbdJzQJSGlFKUaBVLyGgWR0Clt+LK3d9EdX2UKGgGaAloD0MIK0zfa0icdECUhpRSlGgVS75oFkdApbgGGqPwNXV9lChoBmgJaA9DCF4wuObO1XNAlIaUUpRoFUvLaBZHQKW4E4ecQRR1fZQoaAZoCWgPQwgWwJSBAyRyQJSGlFKUaBVLpGgWR0CluCz8pCrtdX2UKGgGaAloD0MIHGDmOziDcUCUhpRSlGgVS7doFkdApbhAp8WsR3V9lChoBmgJaA9DCAjIl1ABq3BAlIaUUpRoFUuQaBZHQKW4TATIvJ11fZQoaAZoCWgPQwheS8gHfU5wQJSGlFKUaBVLq2gWR0CluFMzl90BdX2UKGgGaAloD0MIjsh3KbVqcUCUhpRSlGgVS6hoFkdApbhYuf29MHV9lChoBmgJaA9DCJhqZi3FtXJAlIaUUpRoFUuMaBZHQKW4WyHEdeZ1fZQoaAZoCWgPQwil2NE4lP9xQJSGlFKUaBVLuGgWR0CluHI0IkZ8dX2UKGgGaAloD0MIOZhNgKEbcUCUhpRSlGgVS6FoFkdApbiGQMhHLHV9lChoBmgJaA9DCNRJtrocpHJAlIaUUpRoFUuhaBZHQKW4jiUgSvl1fZQoaAZoCWgPQwgyq3e4XQNwQJSGlFKUaBVLk2gWR0CluJAiu+yrdX2UKGgGaAloD0MIycfuAuXtcUCUhpRSlGgVS6poFkdApbihIxxku3V9lChoBmgJaA9DCOMan8n+m0xAlIaUUpRoFUtyaBZHQKW4/rl/6O51fZQoaAZoCWgPQwgNN+DzA+xwQJSGlFKUaBVLlWgWR0CluQb0nPVvdX2UKGgGaAloD0MInbzIBHyickCUhpRSlGgVS5loFkdApbkdmlImPnV9lChoBmgJaA9DCE/JObFHBHNAlIaUUpRoFUusaBZHQKW5VxXnyNJ1fZQoaAZoCWgPQwjU1LK1vvNyQJSGlFKUaBVLuGgWR0CluZneaa1DdX2UKGgGaAloD0MIZ/M4DGbTcECUhpRSlGgVS5hoFkdApbmtAJLM93V9lChoBmgJaA9DCBUdyeX/J3RAlIaUUpRoFUuzaBZHQKW5uphF3IN1fZQoaAZoCWgPQwgVqwZhbuxxQJSGlFKUaBVLrmgWR0ClucQIdELIdX2UKGgGaAloD0MIdR4V/zdTcECUhpRSlGgVS6toFkdApbnLJhfBvnV9lChoBmgJaA9DCA98DFYcFHBAlIaUUpRoFUueaBZHQKW59gIhQnB1fZQoaAZoCWgPQwilviztFF5zQJSGlFKUaBVLuGgWR0CluflXaJyidX2UKGgGaAloD0MICI7LuKnuckCUhpRSlGgVS7poFkdApbn4c3l0YHV9lChoBmgJaA9DCHJTA80nx3NAlIaUUpRoFUu/aBZHQKW6JLytmth1fZQoaAZoCWgPQwg8TWa8bYZyQJSGlFKUaBVLpmgWR0CluiSTyJ9BdX2UKGgGaAloD0MIuTR+4dVHc0CUhpRSlGgVS7ZoFkdApboxTwUg0XV9lChoBmgJaA9DCBgIAmSo9nFAlIaUUpRoFUu/aBZHQKW6RYODrZ91fZQoaAZoCWgPQwhPCB10iepxQJSGlFKUaBVLoWgWR0ClunhRAKOUdX2UKGgGaAloD0MIWKoLeNl7ckCUhpRSlGgVS6poFkdApbqgqZtvXXV9lChoBmgJaA9DCOJXrOEiHXNAlIaUUpRoFUu4aBZHQKW6pJHy3Ct1fZQoaAZoCWgPQwj8witJniVJQJSGlFKUaBVLZ2gWR0Cluqmt6ol2dX2UKGgGaAloD0MIy4P0FLnDcUCUhpRSlGgVS6loFkdApbrTX18LKHV9lChoBmgJaA9DCLw9CAE5jXJAlIaUUpRoFUuhaBZHQKW7AGFBY3h1fZQoaAZoCWgPQwjS+8bXngp0QJSGlFKUaBVLsmgWR0CluzfbTMJQdX2UKGgGaAloD0MIlSh7S/kFcECUhpRSlGgVS5doFkdApbtAfp2U0XV9lChoBmgJaA9DCFrxDYVPRnNAlIaUUpRoFUu4aBZHQKW7UWcjJMh1fZQoaAZoCWgPQwiPAG4W79tzQJSGlFKUaBVLvmgWR0Clu2cAJb+tdX2UKGgGaAloD0MIjGSPUPNsc0CUhpRSlGgVS5FoFkdApbtvlCCz1XV9lChoBmgJaA9DCKMHPgar6HFAlIaUUpRoFUuyaBZHQKW7eaTfR/p1fZQoaAZoCWgPQwguWKoL+FRyQJSGlFKUaBVLumgWR0Clu4y8an76dX2UKGgGaAloD0MIMA4uHTMYc0CUhpRSlGgVS6poFkdApbuY+EAYHnV9lChoBmgJaA9DCGAA4UNJJ3FAlIaUUpRoFUuaaBZHQKW7mRaHKwJ1fZQoaAZoCWgPQwi9p3La03ByQJSGlFKUaBVLr2gWR0Clu6LwF1SwdX2UKGgGaAloD0MIuhEWFfHCc0CUhpRSlGgVS6JoFkdApbvi5sj3VXV9lChoBmgJaA9DCGYzh6QWgkVAlIaUUpRoFUt6aBZHQKW8ESbH6uZ1fZQoaAZoCWgPQwgGuYswBVNxQJSGlFKUaBVLpGgWR0ClvBiuuA7QdX2UKGgGaAloD0MIN/qYD8j5cECUhpRSlGgVS5xoFkdApbwxBu4wy3V9lChoBmgJaA9DCFpkO99PwnNAlIaUUpRoFUvAaBZHQKW8VP8hs691fZQoaAZoCWgPQwgPKQZItMVyQJSGlFKUaBVLlWgWR0ClvI3KKYRedX2UKGgGaAloD0MIb/Wc9H55ckCUhpRSlGgVS6loFkdApbzL9AHE/HV9lChoBmgJaA9DCLEZ4ILsPnFAlIaUUpRoFUuKaBZHQKW846vq1PZ1fZQoaAZoCWgPQwit3XaheTNzQJSGlFKUaBVLpGgWR0ClvPbMottidX2UKGgGaAloD0MIyeiAJOzBckCUhpRSlGgVS75oFkdApb0XbRF7U3V9lChoBmgJaA9DCF/v/nivinJAlIaUUpRoFUu1aBZHQKW9L+YtxuN1fZQoaAZoCWgPQwiBsb6ByaBzQJSGlFKUaBVLsGgWR0ClvTo7Njb0dX2UKGgGaAloD0MIuDoA4u7jc0CUhpRSlGgVS8doFkdApb1J64UeuHV9lChoBmgJaA9DCCrHZHH/eXJAlIaUUpRoFUuvaBZHQKW9R9cbBGh1fZQoaAZoCWgPQwjlRSbg1+RyQJSGlFKUaBVLrmgWR0ClvVHS4OMEdX2UKGgGaAloD0MIBg5o6UpfckCUhpRSlGgVS5VoFkdApb1YyhzvJHV9lChoBmgJaA9DCEBQbtt32XFAlIaUUpRoFUuQaBZHQKW9g/X5FgF1fZQoaAZoCWgPQwhos+pztVNwQJSGlFKUaBVLqGgWR0ClvbZVwPy1dX2UKGgGaAloD0MI44v2eGH+c0CUhpRSlGgVS65oFkdApb3wDmr8znV9lChoBmgJaA9DCDTY1HmUQXJAlIaUUpRoFUu0aBZHQKW+Jy+YdAB1fZQoaAZoCWgPQwiVSQ1tQBVxQJSGlFKUaBVLrmgWR0ClvlPZ7HAAdX2UKGgGaAloD0MI0hkYeVlIc0CUhpRSlGgVS6NoFkdApb52rS3LFHV9lChoBmgJaA9DCJkoQup2e29AlIaUUpRoFUuUaBZHQKW+eksSTQp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7672, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
mikes_first_lander-1.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:463ae9b5cd5a947fec865717b89edfed6d12ff634df17aa21fc1f8f5360301cb
3
  size 143986
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78018af707e29a4cd62c81fea6d2945a18557052181ef3f7b884000b693d0270
3
  size 143986
mikes_first_lander-1/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa57b225b00>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa57b225b90>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa57b225c20>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa57b225cb0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fa57b225d40>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fa57b225dd0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa57b225e60>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fa57b225ef0>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa57b225f80>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa57b22b050>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa57b22b0e0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fa57b1fc240>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -47,7 +47,7 @@
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1652225059.4910655,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEAjSb7C4kQ/sCr7vB6sMr88UQa/3hTzPQAAAAAAAAAAmknsO+hNmj0NhR++9AIPv1e4x702ihy+AAAAAAAAAAAzv2E94aRbPxTbwz1+kFS/HBICPppYCD0AAAAAAAAAAM3ezjzkSX0+ugwju0BVML9bQkQ9ttwZvQAAAAAAAAAAZsRzvFyzAbqzvsW20wJdso/Lv7fbr+01AACAPwAAgD8AaYc8cXFrux1q071U7CG+Y2CTvKQumD8AAIA/AAAAAObiZ70W/Bk9Gl+jPo922r6d1rI9OEl4PgAAAAAAAAAA5uymPfaQwj8jCNw+nbrRPWz+ET5esus+AAAAAAAAAABmNqm7ruGwunAwDDpicq01FSWEORo7ILkAAIA/AACAP82YkryFU8e5I+IQtC2Diq/j8Ik64NuVMwAAgD8AAIA/TfQDPfVHtT8a5AM/onzYvBB+HbzCBX49AAAAAAAAAAD6pSg+N9iDPqbYyr7OFBm/ziMJPlAat74AAAAAAAAAAM2FlzzhMIS60oMBs4sC8y5fAri6kpWzMwAAgD8AAIA/APo7vOhMi7yag+C8MKMvPUsxcT2Goms8AACAPwAAgD9QGXK+NQSPP2pznL7ujfG+g+Itv7iknr4AAAAAAAAAAGbGGzp7/rC6MjiKNja4hDFGImI6fa6jtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,13 +69,13 @@
69
  "_current_progress_remaining": -0.0027007999999999477,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdAtdiQAdckCUhpRSlIwBbJRLuowBdJRHQNtRtfBi1At1fZQoaAZoCWgPQwhXW7G/rGZzQJSGlFKUaBVLvmgWR0DbUbbvZyuIdX2UKGgGaAloD0MIZ3v0hntYckCUhpRSlGgVS61oFkdA21G3UmD15HV9lChoBmgJaA9DCGkbf6Kyp29AlIaUUpRoFUuLaBZHQNtRuADJU5x1fZQoaAZoCWgPQwiPM03YPr5yQJSGlFKUaBVLsGgWR0DbUbiCXhOydX2UKGgGaAloD0MIaRt/ojIac0CUhpRSlGgVS6doFkdA21G5dK/VRXV9lChoBmgJaA9DCBLYnIMnjHJAlIaUUpRoFUu1aBZHQNtRvuBQN1B1fZQoaAZoCWgPQwjAWUqW0yNzQJSGlFKUaBVLp2gWR0DbUcV+hGpddX2UKGgGaAloD0MIV7H4TWGcc0CUhpRSlGgVS6NoFkdA21HHxVAAyXV9lChoBmgJaA9DCOOmBprP93NAlIaUUpRoFUutaBZHQNtRySbH6uZ1fZQoaAZoCWgPQwhYx/FDZZdyQJSGlFKUaBVLo2gWR0DbUct3Tuv2dX2UKGgGaAloD0MIaf8DrNVhcUCUhpRSlGgVS7RoFkdA21HMZtelbnV9lChoBmgJaA9DCPyp8dJNY3BAlIaUUpRoFUuiaBZHQNtRz/D+BH11fZQoaAZoCWgPQwgaNsr6zQJxQJSGlFKUaBVLomgWR0DbUdJeWv8qdX2UKGgGaAloD0MIPGnhsso1ckCUhpRSlGgVS61oFkdA21HUFPznR3V9lChoBmgJaA9DCL9H/fVKY3NAlIaUUpRoFUudaBZHQNtR3fMW43F1fZQoaAZoCWgPQwguNxjqMM1yQJSGlFKUaBVLlWgWR0DbUeDAbhm5dX2UKGgGaAloD0MIUG1wInotckCUhpRSlGgVS6loFkdA21HnLvkRz3V9lChoBmgJaA9DCEzGMZL9v3NAlIaUUpRoFUuraBZHQNtR6RQizLR1fZQoaAZoCWgPQwgyyF2EKdVzQJSGlFKUaBVLr2gWR0DbUenAxi5NdX2UKGgGaAloD0MIPx2PGehodECUhpRSlGgVS7BoFkdA21HrdiUgS3V9lChoBmgJaA9DCK2m64muJnRAlIaUUpRoFUu9aBZHQNtR67pqynl1fZQoaAZoCWgPQwhU/rW8Mg1xQJSGlFKUaBVLn2gWR0DbUex4LThHdX2UKGgGaAloD0MIhzO/moPzcUCUhpRSlGgVS5NoFkdA21HxP2f03HV9lChoBmgJaA9DCAYsuYpF4XBAlIaUUpRoFUuJaBZHQNtR9kZaV2R1fZQoaAZoCWgPQwhM4qyIGvpzQJSGlFKUaBVLt2gWR0DbUfj30wrUdX2UKGgGaAloD0MITtNnB9wxckCUhpRSlGgVS6xoFkdA21H5SfUWmHV9lChoBmgJaA9DCDihEAFHknJAlIaUUpRoFUukaBZHQNtR+lEmY0F1fZQoaAZoCWgPQwhDHOvitkluQJSGlFKUaBVLsWgWR0DbUfy9eyAydX2UKGgGaAloD0MIHXIz3ACJckCUhpRSlGgVS51oFkdA21H+MQVbinV9lChoBmgJaA9DCHkFoiel3HJAlIaUUpRoFUutaBZHQNtSA6IvalF1fZQoaAZoCWgPQwi4QILih39xQJSGlFKUaBVLkGgWR0DbUgfROUMYdX2UKGgGaAloD0MIPrFOle99c0CUhpRSlGgVS7hoFkdA21IQaK1og3V9lChoBmgJaA9DCPBN02fHrnBAlIaUUpRoFUubaBZHQNtSEpl4C6p1fZQoaAZoCWgPQwiqLAq7KLVyQJSGlFKUaBVLrWgWR0DbUhYlByCGdX2UKGgGaAloD0MIZhGKrSCdcECUhpRSlGgVS5xoFkdA21IWZH/cWXV9lChoBmgJaA9DCPhtiPEaNHBAlIaUUpRoFUugaBZHQNtSFtDQZ4x1fZQoaAZoCWgPQwiuuaP/ZSdzQJSGlFKUaBVLrWgWR0DbUhhvNu+AdX2UKGgGaAloD0MI5sx2hb5IckCUhpRSlGgVS7JoFkdA21IbS2Yv4HV9lChoBmgJaA9DCEjBU8iV9XNAlIaUUpRoFUuiaBZHQNtSHNrftQd1fZQoaAZoCWgPQwiJXHAGP5VxQJSGlFKUaBVLlWgWR0DbUiCvNeMRdX2UKGgGaAloD0MIfnIUIEpAcUCUhpRSlGgVS5VoFkdA21Ih6w+t83V9lChoBmgJaA9DCPBMaJKY/3FAlIaUUpRoFUu2aBZHQNtSJusxO+J1fZQoaAZoCWgPQwgxJZLopWNyQJSGlFKUaBVLomgWR0DbUifTXrdFdX2UKGgGaAloD0MItKolHeVyc0CUhpRSlGgVS7toFkdA21IqvTPSlXV9lChoBmgJaA9DCJoLXB6rQXFAlIaUUpRoFUuraBZHQNtSK7J4jbB1fZQoaAZoCWgPQwgGZ/D3y4VyQJSGlFKUaBVLh2gWR0DbUiwI0IkadX2UKGgGaAloD0MIP5EnSRc3cUCUhpRSlGgVS55oFkdA21IuCGvfTHV9lChoBmgJaA9DCOEIUik26nBAlIaUUpRoFUuFaBZHQNtSOMjRlYl1fZQoaAZoCWgPQwgHtkqweH9zQJSGlFKUaBVLnWgWR0DbUjn9AHE/dX2UKGgGaAloD0MIGcdI9ggAckCUhpRSlGgVS6VoFkdA21I+WdVebHV9lChoBmgJaA9DCFT9SufDqU9AlIaUUpRoFUteaBZHQNtSQPrnkkt1fZQoaAZoCWgPQwgX8DLDxjBxQJSGlFKUaBVLjmgWR0DbUkCzVtoBdX2UKGgGaAloD0MINq0UAjkUc0CUhpRSlGgVS6BoFkdA21JA+z+m33V9lChoBmgJaA9DCBb8NsT4t3FAlIaUUpRoFUumaBZHQNtSQiHqNZN1fZQoaAZoCWgPQwj2twTgH11xQJSGlFKUaBVLm2gWR0DbUkW3jMmndX2UKGgGaAloD0MIp+hILj9/ckCUhpRSlGgVS7xoFkdA21JJ3n6l+HV9lChoBmgJaA9DCJolAWoqlnBAlIaUUpRoFUufaBZHQNtSS/9YOlR1fZQoaAZoCWgPQwihvmVOVxdyQJSGlFKUaBVLr2gWR0DbUk8C1Z1WdX2UKGgGaAloD0MIBmSvd398cECUhpRSlGgVS5JoFkdA21JRsz2vjnV9lChoBmgJaA9DCG1zY3pCnnNAlIaUUpRoFUunaBZHQNtSU2itaIN1fZQoaAZoCWgPQwhrZFdaRhNxQJSGlFKUaBVLk2gWR0DbUlVMHryEdX2UKGgGaAloD0MIfJxpwnYRckCUhpRSlGgVS59oFkdA21JWVUdaMnV9lChoBmgJaA9DCPENhc+Wq3FAlIaUUpRoFUulaBZHQNtSV5aNdZ91fZQoaAZoCWgPQwhJnBVRU45yQJSGlFKUaBVLm2gWR0DbUmOdkJ8fdX2UKGgGaAloD0MIEqW9wZcgckCUhpRSlGgVS6NoFkdA21Jku76HkHV9lChoBmgJaA9DCNk+5C2XenBAlIaUUpRoFUuSaBZHQNtSaCN4qw11fZQoaAZoCWgPQwh1VgvsMfxxQJSGlFKUaBVLnGgWR0DbUmhTm4iHdX2UKGgGaAloD0MItMwiFNvNckCUhpRSlGgVS6VoFkdA21JtAH3UQXV9lChoBmgJaA9DCB79L9eiZXFAlIaUUpRoFUufaBZHQNtScKAavRt1fZQoaAZoCWgPQwigGFkyB2NyQJSGlFKUaBVLr2gWR0DbUnFkOI69dX2UKGgGaAloD0MI/0EkQ85Tc0CUhpRSlGgVS7loFkdA21Jy4QBgeHV9lChoBmgJaA9DCACuZMcGDHNAlIaUUpRoFUudaBZHQNtSdHscABF1fZQoaAZoCWgPQwhPyw9cZQZxQJSGlFKUaBVLjmgWR0DbUnhXbM5fdX2UKGgGaAloD0MIUyRfCaSRc0CUhpRSlGgVS7BoFkdA21J71BMSK3V9lChoBmgJaA9DCP58W7BUeW9AlIaUUpRoFUuRaBZHQNtSfNWyTpx1fZQoaAZoCWgPQwhpVyHl5xtwQJSGlFKUaBVLmGgWR0DbUnzE4vOAdX2UKGgGaAloD0MILZW3Ixx2c0CUhpRSlGgVS61oFkdA21J9925hB3V9lChoBmgJaA9DCMgHPZvVOHFAlIaUUpRoFUufaBZHQNtSgU2xY7t1fZQoaAZoCWgPQwgg8SvW8ENzQJSGlFKUaBVLt2gWR0DbUojdJrckdX2UKGgGaAloD0MIVDiCVMpIcUCUhpRSlGgVS4hoFkdA21KMkAxSHnV9lChoBmgJaA9DCGfXvRXJX3FAlIaUUpRoFUuaaBZHQNtSkh0ZFXt1fZQoaAZoCWgPQwj+mxcnfvdyQJSGlFKUaBVLvGgWR0DbUph2Qnx8dX2UKGgGaAloD0MIij+KOrNtdECUhpRSlGgVS8JoFkdA21KZH1e0HHV9lChoBmgJaA9DCAnh0cZReHBAlIaUUpRoFUuZaBZHQNtSmwBYFJR1fZQoaAZoCWgPQwjM7PMYJf5xQJSGlFKUaBVLpWgWR0DbUprDEWIodX2UKGgGaAloD0MIxeQNMDNecUCUhpRSlGgVS5doFkdA21KbNVBD5XV9lChoBmgJaA9DCJlho6wfV3NAlIaUUpRoFUudaBZHQNtSniXD3uh1fZQoaAZoCWgPQwh+ObNd4W1yQJSGlFKUaBVLjmgWR0DbUqLb8FY/dX2UKGgGaAloD0MIa9WuCemgckCUhpRSlGgVS61oFkdA21Kj0WuX/3V9lChoBmgJaA9DCAJGlzfH03NAlIaUUpRoFUuzaBZHQNtSqbedkJ91fZQoaAZoCWgPQwjc1hael1dxQJSGlFKUaBVLp2gWR0DbUqsPmPo3dX2UKGgGaAloD0MIPdaMDDI+ckCUhpRSlGgVS65oFkdA21Ks+23KCHV9lChoBmgJaA9DCFVP5h+9+3FAlIaUUpRoFUuvaBZHQNtSrrr5ZbJ1fZQoaAZoCWgPQwhZorPM4sNyQJSGlFKUaBVLoGgWR0DbUrZ03fhudX2UKGgGaAloD0MIjPhOzDp5c0CUhpRSlGgVS8NoFkdA21K4LU1AJXV9lChoBmgJaA9DCJEqildZIHFAlIaUUpRoFUuUaBZHQNtSu8XenAJ1fZQoaAZoCWgPQwgGDf0TXPxyQJSGlFKUaBVLqmgWR0DbUrzHdXT3dX2UKGgGaAloD0MIZM3IILdacECUhpRSlGgVS5poFkdA21LDKg7HQ3V9lChoBmgJaA9DCGpOXmQCjnFAlIaUUpRoFUuPaBZHQNtSxcCkoF51ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 6448,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2c4ab5f710>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2c4ab5f7a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2c4ab5f830>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2c4ab5f8c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2c4ab5f950>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2c4ab5f9e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2c4ab5fa70>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2c4ab5fb00>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2c4ab5fb90>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2c4ab5fc20>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2c4ab5fcb0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2c4ab2d660>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1652286512.2623978,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACw6LpseuO7UjhaPZxGcD3afxS9QcUVPAAAgD8AAIA/jQPRPeCjoT//V8w+sqwUvx9Jij6ynI8+AAAAAAAAAABzlaI9FLi1P1/VLD+0fca94Pa1O22dRz4AAAAAAAAAADORMTwfm+y7GP92PTkhbDtmxD+96wZoPAAAgD8AAIA/AOxnPQVD07suBaG+mU+FvnO8m7yyagc/AACAPwAAgD9mHiE79lRLusxHhzme4lI0GYWRu5GCn7gAAIA/AACAP6oRU77/HhQ/CEL8PXlIJr83gtu+c0RPPgAAAAAAAAAAGlIrvUsTAT9WLic978JQv8QIsL20EJY9AAAAAAAAAACaiui9yoFSPxMDA767CEW/TXOvvjy+xrwAAAAAAAAAAADQkjuPMl+6d+YiOtWuPjWu/Qw7K8M+uQAAgD8AAIA/mtMYPaHno7zNRTa+W564vOzkLDzIPOi9AACAPwAAgD+NnIe9SeqpP6HZM78bnAS/hcODPAs9170AAAAAAAAAAJrrRz1IMYy6bu7xt6/I0LL1QQ273J4MNwAAgD8AAIA/mruRPFwjbbrEMC+0ZFUKrwKH1znujq0zAACAPwAAgD/NdlK9FAyhusiWQTt8g5w2tZL+OTeGkzUAAIA/AACAP2bVsTwKQCW7KxrnvNtNUzykV0g8h+s4vQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
69
  "_current_progress_remaining": -0.0027007999999999477,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIECOER9t4ckCUhpRSlIwBbJRLv4wBdJRHQKWsEWrOqvN1fZQoaAZoCWgPQwjEI/Hy9MFyQJSGlFKUaBVLt2gWR0ClrBnGS6lMdX2UKGgGaAloD0MI6LzGLpF6ckCUhpRSlGgVS7VoFkdApaw3pbD/EXV9lChoBmgJaA9DCKuTMxQ38nJAlIaUUpRoFUuZaBZHQKWsZiCrcTJ1fZQoaAZoCWgPQwgsDmd+NZBxQJSGlFKUaBVLnWgWR0ClrHvHLidbdX2UKGgGaAloD0MIoiQk0jaHcUCUhpRSlGgVS5VoFkdApbVm6iCaqnV9lChoBmgJaA9DCLKDSlzHYHNAlIaUUpRoFUujaBZHQKW1ar7wazh1fZQoaAZoCWgPQwi13m+0Yw5zQJSGlFKUaBVLuWgWR0CltZ3kYGdJdX2UKGgGaAloD0MI36XUJSNhdECUhpRSlGgVS7xoFkdApbWzVrhzeXV9lChoBmgJaA9DCDo/xXEgIXNAlIaUUpRoFUu7aBZHQKW1xspG4I91fZQoaAZoCWgPQwjWx0PfHYxzQJSGlFKUaBVLpWgWR0Cltd+HJtBOdX2UKGgGaAloD0MIBp/m5AWbc0CUhpRSlGgVS7NoFkdApbXgiFCb+nV9lChoBmgJaA9DCMaGbvYHB3NAlIaUUpRoFUu3aBZHQKW14zhP0qZ1fZQoaAZoCWgPQwguVWmL6wR0QJSGlFKUaBVLxGgWR0CltiPTw2ETdX2UKGgGaAloD0MIWHGqtbDLc0CUhpRSlGgVS7poFkdApbYm9WZJCnV9lChoBmgJaA9DCF392CS/7nJAlIaUUpRoFUuWaBZHQKW2NaK1og51fZQoaAZoCWgPQwiGOUGbHNdxQJSGlFKUaBVLrWgWR0Cltk0lzEJjdX2UKGgGaAloD0MIi1JCsGqfckCUhpRSlGgVS6RoFkdApbZdLHuJDXV9lChoBmgJaA9DCLZpbK/FlnFAlIaUUpRoFUujaBZHQKW2pdP+GXZ1fZQoaAZoCWgPQwiuoGmJVUt0QJSGlFKUaBVLwmgWR0Cltr6JQ+EAdX2UKGgGaAloD0MIpztPPKcKdECUhpRSlGgVS6ZoFkdApbbXxBmf5HV9lChoBmgJaA9DCGsQ5nYvKnFAlIaUUpRoFUuoaBZHQKW24A93bEh1fZQoaAZoCWgPQwiUiVsFcRhzQJSGlFKUaBVLtGgWR0CltuShBZ6ldX2UKGgGaAloD0MIsktUb02HcUCUhpRSlGgVS5xoFkdApbcIaJhvznV9lChoBmgJaA9DCPG4qBZRu3NAlIaUUpRoFUuwaBZHQKW3H7BO58V1fZQoaAZoCWgPQwhgj4mUpntyQJSGlFKUaBVLl2gWR0CltyUTcqOMdX2UKGgGaAloD0MIppcYyzSzcECUhpRSlGgVS6ZoFkdApbcuX/o7m3V9lChoBmgJaA9DCJkNMskI7HJAlIaUUpRoFUucaBZHQKW3MF36hxp1fZQoaAZoCWgPQwjOUUfH1XF0QJSGlFKUaBVLqWgWR0Clt08vM8oydX2UKGgGaAloD0MIraOqCeLJckCUhpRSlGgVS71oFkdApbfIAEMb33V9lChoBmgJaA9DCCKI83BC+HNAlIaUUpRoFUu7aBZHQKW31sk6cRV1fZQoaAZoCWgPQwjg9gSJbdJzQJSGlFKUaBVLyGgWR0Clt+LK3d9EdX2UKGgGaAloD0MIK0zfa0icdECUhpRSlGgVS75oFkdApbgGGqPwNXV9lChoBmgJaA9DCF4wuObO1XNAlIaUUpRoFUvLaBZHQKW4E4ecQRR1fZQoaAZoCWgPQwgWwJSBAyRyQJSGlFKUaBVLpGgWR0CluCz8pCrtdX2UKGgGaAloD0MIHGDmOziDcUCUhpRSlGgVS7doFkdApbhAp8WsR3V9lChoBmgJaA9DCAjIl1ABq3BAlIaUUpRoFUuQaBZHQKW4TATIvJ11fZQoaAZoCWgPQwheS8gHfU5wQJSGlFKUaBVLq2gWR0CluFMzl90BdX2UKGgGaAloD0MIjsh3KbVqcUCUhpRSlGgVS6hoFkdApbhYuf29MHV9lChoBmgJaA9DCJhqZi3FtXJAlIaUUpRoFUuMaBZHQKW4WyHEdeZ1fZQoaAZoCWgPQwil2NE4lP9xQJSGlFKUaBVLuGgWR0CluHI0IkZ8dX2UKGgGaAloD0MIOZhNgKEbcUCUhpRSlGgVS6FoFkdApbiGQMhHLHV9lChoBmgJaA9DCNRJtrocpHJAlIaUUpRoFUuhaBZHQKW4jiUgSvl1fZQoaAZoCWgPQwgyq3e4XQNwQJSGlFKUaBVLk2gWR0CluJAiu+yrdX2UKGgGaAloD0MIycfuAuXtcUCUhpRSlGgVS6poFkdApbihIxxku3V9lChoBmgJaA9DCOMan8n+m0xAlIaUUpRoFUtyaBZHQKW4/rl/6O51fZQoaAZoCWgPQwgNN+DzA+xwQJSGlFKUaBVLlWgWR0CluQb0nPVvdX2UKGgGaAloD0MInbzIBHyickCUhpRSlGgVS5loFkdApbkdmlImPnV9lChoBmgJaA9DCE/JObFHBHNAlIaUUpRoFUusaBZHQKW5VxXnyNJ1fZQoaAZoCWgPQwjU1LK1vvNyQJSGlFKUaBVLuGgWR0CluZneaa1DdX2UKGgGaAloD0MIZ/M4DGbTcECUhpRSlGgVS5hoFkdApbmtAJLM93V9lChoBmgJaA9DCBUdyeX/J3RAlIaUUpRoFUuzaBZHQKW5uphF3IN1fZQoaAZoCWgPQwgVqwZhbuxxQJSGlFKUaBVLrmgWR0ClucQIdELIdX2UKGgGaAloD0MIdR4V/zdTcECUhpRSlGgVS6toFkdApbnLJhfBvnV9lChoBmgJaA9DCA98DFYcFHBAlIaUUpRoFUueaBZHQKW59gIhQnB1fZQoaAZoCWgPQwilviztFF5zQJSGlFKUaBVLuGgWR0CluflXaJyidX2UKGgGaAloD0MICI7LuKnuckCUhpRSlGgVS7poFkdApbn4c3l0YHV9lChoBmgJaA9DCHJTA80nx3NAlIaUUpRoFUu/aBZHQKW6JLytmth1fZQoaAZoCWgPQwg8TWa8bYZyQJSGlFKUaBVLpmgWR0CluiSTyJ9BdX2UKGgGaAloD0MIuTR+4dVHc0CUhpRSlGgVS7ZoFkdApboxTwUg0XV9lChoBmgJaA9DCBgIAmSo9nFAlIaUUpRoFUu/aBZHQKW6RYODrZ91fZQoaAZoCWgPQwhPCB10iepxQJSGlFKUaBVLoWgWR0ClunhRAKOUdX2UKGgGaAloD0MIWKoLeNl7ckCUhpRSlGgVS6poFkdApbqgqZtvXXV9lChoBmgJaA9DCOJXrOEiHXNAlIaUUpRoFUu4aBZHQKW6pJHy3Ct1fZQoaAZoCWgPQwj8witJniVJQJSGlFKUaBVLZ2gWR0Cluqmt6ol2dX2UKGgGaAloD0MIy4P0FLnDcUCUhpRSlGgVS6loFkdApbrTX18LKHV9lChoBmgJaA9DCLw9CAE5jXJAlIaUUpRoFUuhaBZHQKW7AGFBY3h1fZQoaAZoCWgPQwjS+8bXngp0QJSGlFKUaBVLsmgWR0CluzfbTMJQdX2UKGgGaAloD0MIlSh7S/kFcECUhpRSlGgVS5doFkdApbtAfp2U0XV9lChoBmgJaA9DCFrxDYVPRnNAlIaUUpRoFUu4aBZHQKW7UWcjJMh1fZQoaAZoCWgPQwiPAG4W79tzQJSGlFKUaBVLvmgWR0Clu2cAJb+tdX2UKGgGaAloD0MIjGSPUPNsc0CUhpRSlGgVS5FoFkdApbtvlCCz1XV9lChoBmgJaA9DCKMHPgar6HFAlIaUUpRoFUuyaBZHQKW7eaTfR/p1fZQoaAZoCWgPQwguWKoL+FRyQJSGlFKUaBVLumgWR0Clu4y8an76dX2UKGgGaAloD0MIMA4uHTMYc0CUhpRSlGgVS6poFkdApbuY+EAYHnV9lChoBmgJaA9DCGAA4UNJJ3FAlIaUUpRoFUuaaBZHQKW7mRaHKwJ1fZQoaAZoCWgPQwi9p3La03ByQJSGlFKUaBVLr2gWR0Clu6LwF1SwdX2UKGgGaAloD0MIuhEWFfHCc0CUhpRSlGgVS6JoFkdApbvi5sj3VXV9lChoBmgJaA9DCGYzh6QWgkVAlIaUUpRoFUt6aBZHQKW8ESbH6uZ1fZQoaAZoCWgPQwgGuYswBVNxQJSGlFKUaBVLpGgWR0ClvBiuuA7QdX2UKGgGaAloD0MIN/qYD8j5cECUhpRSlGgVS5xoFkdApbwxBu4wy3V9lChoBmgJaA9DCFpkO99PwnNAlIaUUpRoFUvAaBZHQKW8VP8hs691fZQoaAZoCWgPQwgPKQZItMVyQJSGlFKUaBVLlWgWR0ClvI3KKYRedX2UKGgGaAloD0MIb/Wc9H55ckCUhpRSlGgVS6loFkdApbzL9AHE/HV9lChoBmgJaA9DCLEZ4ILsPnFAlIaUUpRoFUuKaBZHQKW846vq1PZ1fZQoaAZoCWgPQwit3XaheTNzQJSGlFKUaBVLpGgWR0ClvPbMottidX2UKGgGaAloD0MIyeiAJOzBckCUhpRSlGgVS75oFkdApb0XbRF7U3V9lChoBmgJaA9DCF/v/nivinJAlIaUUpRoFUu1aBZHQKW9L+YtxuN1fZQoaAZoCWgPQwiBsb6ByaBzQJSGlFKUaBVLsGgWR0ClvTo7Njb0dX2UKGgGaAloD0MIuDoA4u7jc0CUhpRSlGgVS8doFkdApb1J64UeuHV9lChoBmgJaA9DCCrHZHH/eXJAlIaUUpRoFUuvaBZHQKW9R9cbBGh1fZQoaAZoCWgPQwjlRSbg1+RyQJSGlFKUaBVLrmgWR0ClvVHS4OMEdX2UKGgGaAloD0MIBg5o6UpfckCUhpRSlGgVS5VoFkdApb1YyhzvJHV9lChoBmgJaA9DCEBQbtt32XFAlIaUUpRoFUuQaBZHQKW9g/X5FgF1fZQoaAZoCWgPQwhos+pztVNwQJSGlFKUaBVLqGgWR0ClvbZVwPy1dX2UKGgGaAloD0MI44v2eGH+c0CUhpRSlGgVS65oFkdApb3wDmr8znV9lChoBmgJaA9DCDTY1HmUQXJAlIaUUpRoFUu0aBZHQKW+Jy+YdAB1fZQoaAZoCWgPQwiVSQ1tQBVxQJSGlFKUaBVLrmgWR0ClvlPZ7HAAdX2UKGgGaAloD0MI0hkYeVlIc0CUhpRSlGgVS6NoFkdApb52rS3LFHV9lChoBmgJaA9DCJkoQup2e29AlIaUUpRoFUuUaBZHQKW+eksSTQp1ZS4="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 7672,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
mikes_first_lander-1/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6f33f235fc6cb1b75e38fca2bacd5f2f6c4a28b57f22f0dcf54b32fae74a32ab
3
  size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:463635faaef940805fd201963eb2d8f3a26d9a66ca404e7a487e7df6d8543f90
3
  size 84893
mikes_first_lander-1/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9e6ed317c72dd5767fef1febf474023201052d771b86f1d18c5c74c64d1d1427
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8a49802360382d3d0b32931265d24980c29987ec23459c915e54e239a074037
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ba570e5fdc06e745b26a685f43f3ccf4d0dac0eebf258328fdd65da2b2560677
3
- size 193753
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:274084e1f241e247ff8ad875607a3bde5d1c0fd610a12a9f9b6e4ca89035f9c3
3
+ size 183451
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 290.2850159864978, "std_reward": 15.663476809001063, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T00:10:37.235857"}
 
1
+ {"mean_reward": 294.61028826670224, "std_reward": 18.686373085480827, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T17:23:03.824983"}