from torch import nn import torch.nn.functional as F class BadNet(nn.Module): # def __init__(self, input_channels, output_num): def __init__(self, 3072,10): super().__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels=input_channels, out_channels=16, kernel_size=5, stride=1), nn.ReLU(), nn.AvgPool2d(kernel_size=2, stride=2) ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1), nn.ReLU(), nn.AvgPool2d(kernel_size=2, stride=2) ) fc1_input_features = 800 if input_channels == 3 else 512 self.fc1 = nn.Sequential( nn.Linear(in_features=fc1_input_features, out_features=512), nn.ReLU() ) self.fc2 = nn.Sequential( nn.Linear(in_features=512, out_features=output_num), nn.Softmax(dim=-1) ) self.dropout = nn.Dropout(p=.5) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) x = self.fc1(x) x = self.fc2(x) return x