File size: 13,790 Bytes
14538eb |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d98fd828c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d98fd828ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d98fd828d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d98fd828dc0>", "_build": "<function ActorCriticPolicy._build at 0x7d98fd828e50>", "forward": "<function ActorCriticPolicy.forward at 0x7d98fd828ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d98fd828f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d98fd829000>", "_predict": "<function ActorCriticPolicy._predict at 0x7d98fd829090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d98fd829120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d98fd8291b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d98fd829240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d98fd7c3700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714767677549431415, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3FHz1TF70/6LF4Pn/RFz3qcDo9+nRHPgAAAAAAAAAArbgtPmOZfz8a2go9RsClvt7JPT7ouxi+AAAAAAAAAADahxw+02RvPyIPVr1DFIa+62DBPeBvJ74AAAAAAAAAAKa6OD7sTqA/PVQQP8We2L70m4M+vpRLPgAAAAAAAAAALUs2vlHKzT6V3M09k50avjt5NL0FXDK9AAAAAAAAAABToSc+cgp/PlxXjr2NSDi+I0WxPOQWgj0AAAAAAAAAABq0AD1vRgg/ms4NvZ6vW76zEhW7lUtdvQAAAAAAAAAAO1fxvkOpgz8t5ba9T7ivvhnHi75OiAM9AAAAAAAAAADoE5O+Uh4EPy5uwbxiQ16+A32EvZL5jb0AAAAAAAAAADPNBT5TdkQ/BlQRvu2AfL4OQkY9cruavAAAAAAAAAAA4BJHvsJ1tj6LtPE9WUI2vqPIZ73mTNk8AAAAAAAAAADAc1o+9Eo/Puf+Er6xwTS+j4lrvcQnyTsAAAAAAAAAAM34/LuzHy8/EmY6vTaRf76p2Wk80YePPAAAAAAAAAAAWvmMPaNsAD0TSYk9TeBGvkt/DDxAQFg9AAAAAAAAAAAA3kw9D2G3P78MBD6uIK2+Al/7PR7/sD0AAAAAAAAAACNhXb77ubG8re9pu3sUsbkCCR8+jTuMOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAUIHTqjaiMAWyUTTsBjAF0lEdAlazKKpDNQnV9lChoBkdAcFow1ivxIGgHTY0BaAhHQJWtrqmj0th1fZQoaAZHQHFRiiqQzUJoB020AWgIR0CVwm1JUYKqdX2UKGgGR0BvCShrWRRuaAdNZQFoCEdAlcKtuHerMnV9lChoBkdAcgZk/r0J4WgHTVwBaAhHQJXDEBfa6Bl1fZQoaAZHQHC5t4VymyhoB01vAWgIR0CVxBamXPZ7dX2UKGgGR0BwAFMuez2OaAdNVQFoCEdAlcQXtWuHOHV9lChoBkdAb47aSs8xK2gHTWEBaAhHQJXF8lyBCld1fZQoaAZHQG9pxDTjNpxoB01XAWgIR0CVx3sabWmQdX2UKGgGR0By18bp/wy7aAdNVQFoCEdAlcgyhew9q3V9lChoBkdAcCwyquKXOWgHTWsBaAhHQJXJZXko4Mp1fZQoaAZHQHCFGFev6j5oB016AWgIR0CVyvL1mJ3xdX2UKGgGR0Bt8odIXj2jaAdNXQFoCEdAlcuVFlTWG3V9lChoBkdAcmoD7ZWaMWgHTSgBaAhHQJXMnyxzJZJ1fZQoaAZHQHHQhMajveBoB01EAWgIR0CVzLp1ie/YdX2UKGgGR0BwZvU2DQJHaAdNOAFoCEdAlc0MCo0hvHV9lChoBkdAbN+WLxZuAWgHTTEBaAhHQJXN4e8wpON1fZQoaAZHQG+jCh37k4poB01zAWgIR0CVzxUWVNYbdX2UKGgGR0BxODYI0IkaaAdNPwFoCEdAlc/pdrwfAHV9lChoBkdAcZ1LKFIuoWgHTTUBaAhHQJXRSeumrKh1fZQoaAZHQHJzH+yZ8a5oB01vAWgIR0CV0h+A3DNydX2UKGgGR0BuxWwV0tAcaAdNaAFoCEdAldI+KCQLeHV9lChoBkdAbj4+iaiKzmgHTT0BaAhHQJXTik56t1Z1fZQoaAZHQHBTvCAMDwJoB02DAWgIR0CV1D7CzkZKdX2UKGgGR0Bu3XHHWBjGaAdNYAFoCEdAldZuUdJaq3V9lChoBkdAb1zDa4+bE2gHTVsBaAhHQJXXAGqxTsJ1fZQoaAZHQHIwCeI2wV1oB01RAWgIR0CV18t5D7ZWdX2UKGgGR0BwJwDlo11oaAdNTAFoCEdAldkRo/Rmb3V9lChoBkdAcDBKsdT5wmgHTUABaAhHQJXaNrCWNWF1fZQoaAZHQG67yv1UVBVoB01TAWgIR0CV2zUW2w3YdX2UKGgGR0Bw6ALUkOZtaAdNgwFoCEdAldxcRHww03V9lChoBkdAcFdauwHJLmgHTXIBaAhHQJXdDwSamXR1fZQoaAZHQHBZVvAGjbloB00/AWgIR0CV3axjriVCdX2UKGgGR0BwzlE1EVnFaAdNVQFoCEdAld3PSH/LknV9lChoBkdAb51BiTdLx2gHTXUBaAhHQJXeBvUBnzx1fZQoaAZHQHAdNDMNc4ZoB00lAWgIR0CV3f4YJmdzdX2UKGgGR0BxjL5XU6PsaAdNMgFoCEdAld9SIYWLxnV9lChoBkdAbzgQ+2VmjGgHTVkBaAhHQJXguTPjXFt1fZQoaAZHQHGQq55JK8NoB01pAWgIR0CV4rteD3/QdX2UKGgGR0Bx+6UhV2idaAdNegFoCEdAleRJYPoV23V9lChoBkdASe7bJwKjSGgHTQQBaAhHQJXlGMZP2wp1fZQoaAZHQHDYCFCb+cZoB01TAWgIR0CV5YoScslLdX2UKGgGR0BwhpE3Kji5aAdNbwFoCEdAleehTKkl/3V9lChoBkdAcMBXp4bCJ2gHTVIBaAhHQJXnnhJiAlR1fZQoaAZHQHANYYvWYnhoB00xAWgIR0CV6C5ggHNYdX2UKGgGR0BuLSE384xUaAdNOgFoCEdAlexz5CWu5nV9lChoBkdAa8wBkI5YHWgHTT8BaAhHQJXswOFxn4B1fZQoaAZHQG7+y26TW5JoB01XAWgIR0CV7P4SHuZ1dX2UKGgGR0Bv1AJ7b+LnaAdNUgFoCEdAle2cjNY8uHV9lChoBkdAb6lrGBFuvWgHTXsBaAhHQJXuL3JxNqR1fZQoaAZHQG7D+e4Cp3poB01qAWgIR0CV7rGEf1YhdX2UKGgGR0BvbBDLKV6eaAdNXgFoCEdAlgFZ48lolHV9lChoBkdAbqvGo73fymgHTVwBaAhHQJYCyQhfShJ1fZQoaAZHQHG4okeIVM5oB01dAmgIR0CWA8HX2/SIdX2UKGgGR0Bv8fuCwr1/aAdNQwFoCEdAlgQAdXDFZXV9lChoBkdAcM8vLX+VDGgHTVEBaAhHQJYGNe9i+cp1fZQoaAZHQHHH3scABDJoB01aAWgIR0CWB3j2zv7WdX2UKGgGR0Bs5hzRx95RaAdNQQFoCEdAlgmQ4jrzG3V9lChoBkdAbdjQ2uPmxWgHTVUBaAhHQJYKAR/ViF11fZQoaAZHQGuRDvVmSQpoB01cAWgIR0CWCltSydFwdX2UKGgGR0BGER3u/k/9aAdL/2gIR0CWCpTlT3qSdX2UKGgGR0BwsNhpg1FZaAdNwAFoCEdAlgzoA0bcXXV9lChoBkdAb4x4O+ZgHGgHTSoBaAhHQJYNGPT5O8F1fZQoaAZHQG5tD/uLJjloB01DAWgIR0CWDRFS88LbdX2UKGgGR0BxMxw6ySmqaAdNQQFoCEdAlg0nQQcxTXV9lChoBkdAba+Bkqc3EWgHTVwBaAhHQJYN7rC3w1B1fZQoaAZHQG6Absv7FbVoB008AWgIR0CWDjuSwGGEdX2UKGgGR0BwEhwBHTZyaAdNOgFoCEdAlg9E7bL2YnV9lChoBkdAcP+8rI5o5GgHTSgBaAhHQJYQ53aBZp11fZQoaAZHQGrt8B+4LCxoB002AWgIR0CWEUO7g88tdX2UKGgGR0BwFrnU2DQJaAdNWAFoCEdAlhG5LdvbXnV9lChoBkdAbNhfeDWbw2gHTTEBaAhHQJYUjN+so2J1fZQoaAZHQHAXN7ngYP5oB01uAWgIR0CWFin5BTn8dX2UKGgGR8AW8zdk8RthaAdL8mgIR0CWFtCq6vq1dX2UKGgGR0BxHzTVlPJraAdNOAFoCEdAlhd/YjB2wHV9lChoBkdAccTGKQ7tA2gHTUoBaAhHQJYYhM6BAfN1fZQoaAZHQHAT2+XZ5A1oB009AWgIR0CWGmD2rXDndX2UKGgGR0BtGWN3np0PaAdNIwFoCEdAlhqDlPrOaHV9lChoBkdAcB4QuEmICWgHTUkBaAhHQJYbDFfiPyV1fZQoaAZHQHGDwmmce8xoB02cAWgIR0CWG30cfeUIdX2UKGgGR0Bu0OQnx8UmaAdNRAFoCEdAlhvgw482aXV9lChoBkdAcZejqOcUd2gHTWYBaAhHQJYcoOf/WDp1fZQoaAZHQCuiLAHmig1oB00PAWgIR0CWHW9W6shgdX2UKGgGR0BFHNcW0qpcaAdNHAFoCEdAlh6TgEU0vXV9lChoBkdAbr0yHEdeY2gHTScBaAhHQJYftG0/nnx1fZQoaAZHQG+M+lCTlkpoB008AWgIR0CWJPihWYF8dX2UKGgGR0BrrnrnkkrxaAdNRwFoCEdAlihTK9wm3XV9lChoBkdAcmk/7BO58WgHTTcBaAhHQJYoTXvphWp1fZQoaAZHQFDj4etCAtpoB0vvaAhHQJYokckt29t1fZQoaAZHQG6ZeQ+2VmloB00IAmgIR0CWKQYh+vyLdX2UKGgGR0Bw+TXXiBGyaAdNZAFoCEdAlikVF2FFlXV9lChoBkdAceqsWweNk2gHTQ8BaAhHQJYqep6yB091fZQoaAZHQHFKlB2OhkBoB01PAWgIR0CWKqBUJfICdX2UKGgGR0BwyfGR3eN2aAdNOQFoCEdAlitqveP7vXV9lChoBkdASwKGQCCBgGgHTQABaAhHQJYsVIy0rsl1fZQoaAZHQG0E1jAi3XtoB000AWgIR0CWLPX9BKL9dX2UKGgGR0Byb2BpYcNpaAdNaAFoCEdAli142jwhGHV9lChoBkdAbccYyfthNWgHTVIBaAhHQJYuuPjn3cp1fZQoaAZHQHGvhkI5YHRoB00tAWgIR0CWLvQemvW6dX2UKGgGR0BwL28cuJ1raAdNgwFoCEdAli9j+BH09XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |