--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7058 - Accuracy: 0.90 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7675 | 1.0 | 112 | 1.8184 | 0.42 | | 1.2504 | 2.0 | 225 | 1.3015 | 0.62 | | 1.0353 | 3.0 | 337 | 0.9890 | 0.72 | | 0.8318 | 4.0 | 450 | 0.8237 | 0.8 | | 0.4429 | 5.0 | 562 | 0.8123 | 0.78 | | 0.4286 | 6.0 | 675 | 0.6820 | 0.8 | | 0.2553 | 7.0 | 787 | 0.7826 | 0.78 | | 0.3022 | 8.0 | 900 | 0.6811 | 0.77 | | 0.1889 | 9.0 | 1012 | 0.6761 | 0.8 | | 0.1073 | 9.96 | 1120 | 0.7058 | 0.79 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3