--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - smokedataset metrics: - accuracy model-index: - name: smoke_detector results: - task: name: Image Classification type: image-classification dataset: name: smokedataset type: smokedataset config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9951117318435754 --- # smoke_detector This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the smokedataset dataset. It achieves the following results on the evaluation set: - Loss: 0.0187 - Accuracy: 0.9951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1404 | 1.0 | 716 | 0.0396 | 0.9902 | | 0.0493 | 2.0 | 1432 | 0.0337 | 0.9920 | | 0.0237 | 3.0 | 2148 | 0.0263 | 0.9934 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0