Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2096.97 +/- 85.06
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c72005719ce1d11d2cd64aefd0d4c0b2df54778938978b55acb5038c5d98904b
|
3 |
+
size 129002
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5b94dc65e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5b94dc6670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5b94dc6700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5b94dc6790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5b94dc6820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5b94dc68b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5b94dc6940>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5b94dc69d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5b94dc6a60>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5b94dc6af0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5b94dc6b80>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5b94dc6c10>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f5b94db01e0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1676885706653437781,
|
68 |
+
"learning_rate": 0.0003,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJ/C+z34Cfi/mek9vqN6nz/siNI9nhDUP9sz3j4oSCK/gvMtP8cV/L84BVU/euSwv437oL/TIvA+P5hjvmOKYT7rtKy+0IpcPg/ERT+Dxse/gtp1Pk2PEr+6aU8+EBirPlKtNz8NYes+yT6/PiBR6b/cXVs/lEz8PcEwBj8+aSBA9Riovgsqwz9pZpi/YOn4v2XsXz/MJUY/A+iVPzsP7T67nrq/sYnFPtdcVz9SinXAKwqCv/deAj/Lzm4/eLGEvolgXL/MLxxAmzewvXopsr9SrTc/DWHrPsk+vz4gUem/2W80PwIFGz5PTQI/xoAmQBEjRb6sYe29w4tOv0tAA78rsFq/NvCCv/Z5ML8PojbAauUiv5aTTT82++A+kC9RP0k5sT4Xrf0/35AAv57ITsAKgEy///6Mv7BPpD+GrrY+bGayvw1h6z7JPr8+tXEMPw5bhT4mUXS+cK0oP9MwF0Bc9JS+sUCaPxjNir/96Zu/SKtPP0a1qT8JQKk9FsxwPpImMr9idZe/gLWVP2Z57Tuv7Hc+Gu/mv8i+kD0oHsI/P8c7v2xUCb5kaoo+tawQv1KtNz8NYes+yT6/PiBR6b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACWrF62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEJnNPQAAAAA5Q/G/AAAAADf7k70AAAAAWcH4PwAAAADfPeE9AAAAADE0AUAAAAAAN+GcPQAAAAA+Yvy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6y5RtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCsCBT4AAAAAxBv5vwAAAAD/0ms9AAAAAGH74D8AAAAA3SklvQAAAAAqxfs/AAAAAHHYm70AAAAARWzZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDi97YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDMbvM8AAAAAP8qAMAAAAAAODC4vQAAAAC6rvI/AAAAALbGoL0AAAAAekfuPwAAAAANxO89AAAAAI61478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8hUS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9BzCPQAAAABnVd+/AAAAAFlxAb4AAAAAcOfiPwAAAAAD3Ta9AAAAAA9i6D8AAAAA5gMNvgAAAADOmuK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJw1qI9C/oKMAWyUTegDjAF0lEdArvIXMnqmj3V9lChoBkdAl89dn003wWgHTegDaAhHQK70VVYISlF1fZQoaAZHQJzRs7lq8DloB03oA2gIR0Cu9X2QXAM2dX2UKGgGR0CbId3LFGXpaAdN6ANoCEdArvYinYQJ5XV9lChoBkdAnAbsUdq+J2gHTegDaAhHQK8ESxB3Roh1fZQoaAZHQJqhVv73wkRoB03oA2gIR0CvBoPRRdhRdX2UKGgGR0CdY2B9kSVXaAdN6ANoCEdArweuMKkVOHV9lChoBkdAnhFalLvkR2gHTegDaAhHQK8IWpd8iOh1fZQoaAZHQJ5PmPcSGrVoB03oA2gIR0CvEiFdkauPdX2UKGgGR0CelWjBl+VkaAdN6ANoCEdArxRZuwX67HV9lChoBkdAncNflMh5gWgHTegDaAhHQK8VjvNNahZ1fZQoaAZHQJ0FRwsGxD9oB03oA2gIR0CvFj/ATIvKdX2UKGgGR0CaQjO4XoC/aAdN6ANoCEdAryRTKkl/pnV9lChoBkdAnZCD7hvR7mgHTegDaAhHQK8mh9H+ZPV1fZQoaAZHQJ0bJ98Z1mtoB03oA2gIR0CvJ7z6i0v5dX2UKGgGR0CbDekBCD28aAdN6ANoCEdAryhj2lEZznV9lChoBkdAnddTpkf9xmgHTegDaAhHQK8yFSb6P811fZQoaAZHQJ5ALQRf4RFoB03oA2gIR0CvNDIrFwT/dX2UKGgGR0Cerv5z5oGqaAdN6ANoCEdArzVj0e2d/nV9lChoBkdAnbxAYpDu0GgHTegDaAhHQK82BXvH93t1fZQoaAZHQJvh4mF8G9poB03oA2gIR0CvRC//m1YydX2UKGgGR0CYanqABkqdaAdN6ANoCEdAr0ZrRF7UonV9lChoBkdAnrafFzdUKmgHTegDaAhHQK9HlKVY6n11fZQoaAZHQJ0iMZqEeyRoB03oA2gIR0CvSDvuogmrdX2UKGgGR0Ce6FIU8FINaAdN6ANoCEdAr1H4NutOmHV9lChoBkdAneO5FgDzRWgHTegDaAhHQK9ULqY7aIx1fZQoaAZHQJYHnFglWwNoB03oA2gIR0CvVWN0NjLCdX2UKGgGR0CcH0si0OVgaAdN6ANoCEdAr1YMCaJAMXV9lChoBkdAniOllGwzL2gHTegDaAhHQK9kP1RtP551fZQoaAZHQJ2+ytlqagFoB03oA2gIR0CvZmwKrq+rdX2UKGgGR0Cc4lndO6/ZaAdN6ANoCEdAr2eg9A5aNnV9lChoBkdAm79W9Htnf2gHTegDaAhHQK9oRmRNh3J1fZQoaAZHQJrCicFyJbdoB03oA2gIR0CvcioDHOrydX2UKGgGR0CbLPxG2CumaAdN6ANoCEdAr3RirmyPdXV9lChoBkdAms0QSeyzHGgHTegDaAhHQK91lLBbfP51fZQoaAZHQJr/nSfDk2hoB03oA2gIR0CvdjxdY4hmdX2UKGgGR0Ca4bvHtF8YaAdN6ANoCEdAr4Rz7di2D3V9lChoBkdAnnspgb6xgWgHTegDaAhHQK+GoYvWYnh1fZQoaAZHQJ2FNIf8uSRoB03oA2gIR0Cvh9R5cC5mdX2UKGgGR0CfBa8LronsaAdN6ANoCEdAr4iBhWo3rHV9lChoBkdAnf25hOP/72gHTegDaAhHQK+StVcUuct1fZQoaAZHQIPxw+jdpItoB03oA2gIR0CvlQp8OTaCdX2UKGgGR0CRiIETxoZiaAdN6ANoCEdAr5Y8YVIqb3V9lChoBkdAnUBcfaHsTmgHTegDaAhHQK+XCAjps411fZQoaAZHQJ5j+0E5hjRoB03oA2gIR0CvpQ9+PRzBdX2UKGgGR0CYOLEvTPSlaAdN6ANoCEdAr6dB/5LytnV9lChoBkdAnGWix3V092gHTegDaAhHQK+oc/eLvTh1fZQoaAZHQJ+qZBY3eepoB03oA2gIR0CvqSC1qnFYdX2UKGgGR0Cd0bd43WFwaAdN6ANoCEdAr7LYCQtBfXV9lChoBkdAnY9h8UmD2GgHTegDaAhHQK+1HnkDIR11fZQoaAZHQJ3OD4fwI+poB03oA2gIR0CvtksUAT7EdX2UKGgGR0Cbc7HoX9BKaAdN6ANoCEdAr7ctXcQAdXV9lChoBkdAnLQ4xUNrkGgHTegDaAhHQK/FNbUwztV1fZQoaAZHQJ6M0V2zOX5oB03oA2gIR0Cvx1oRh+fAdX2UKGgGR0CfE8ryUcGUaAdN6ANoCEdAr8iCdOIqLHV9lChoBkdAnZkXi3ocJmgHTegDaAhHQK/JKUdq+Jx1fZQoaAZHQJ0XfNjbzshoB03oA2gIR0Cv0x5xR2r5dX2UKGgGR0CfftjLSuyNaAdN6ANoCEdAr9VIFzMibHV9lChoBkdAnDmVKGtZFGgHTegDaAhHQK/Wdjhky1x1fZQoaAZHQJ9wxGI9C/poB03oA2gIR0Cv12MqJ/G3dX2UKGgGR0CeFgpudf9haAdN6ANoCEdAr+U4AU+LWXV9lChoBkdAnP0mhysCDGgHTegDaAhHQK/neb0e2eB1fZQoaAZHQJ62Q4p+c6NoB03oA2gIR0Cv6LBeokzHdX2UKGgGR0Cd1DDcdo38aAdN6ANoCEdAr+ldsP8Q7XV9lChoBkdAns+dShrWRWgHTegDaAhHQK/zbcmjTKF1fZQoaAZHQJ11Oz0HyEtoB03oA2gIR0Cv9ZqI7/4qdX2UKGgGR0CdUblgMMJAaAdN6ANoCEdAr/buMuOCG3V9lChoBkdAmxyv1+RYBGgHTegDaAhHQK/3697F85V1fZQoaAZHQJhI7BDXvphoB03oA2gIR0CwAtr8zhxYdX2UKGgGR0Cbf0ARTS9eaAdN6ANoCEdAsAP31/Ue+3V9lChoBkdAmWC99+gDimgHTegDaAhHQLAEkjy4FzN1fZQoaAZHQJof+jgydnVoB03oA2gIR0CwBOgfp2U0dX2UKGgGR0CbjHryDqW1aAdN6ANoCEdAsAnuiFj/dnV9lChoBkdAknVKcd5prWgHTegDaAhHQLALCGxD9fl1fZQoaAZHQJzWbKeTV2BoB03oA2gIR0CwC9S6lLvkdX2UKGgGR0CKmrCAMDwIaAdN6ANoCEdAsAxXtBv733V9lChoBkdAmuXbn9vS+mgHTegDaAhHQLATIPwNLDh1fZQoaAZHQJoCKX/o7mxoB03oA2gIR0CwFESKaXrudX2UKGgGR0CaMGV8Ti84aAdN6ANoCEdAsBTbY150KnV9lChoBkdAnZq/R/mT1WgHTegDaAhHQLAVMvVVghN1fZQoaAZHQJqyKWC2+f1oB03oA2gIR0CwGhsABDG+dX2UKGgGR0CZaEptrKvFaAdN6ANoCEdAsBs0kC3gDXV9lChoBkdAmJfI9X9zfmgHTegDaAhHQLAcGI4VARl1fZQoaAZHQJudpaV2Rq5oB03oA2gIR0CwHJw8wHqvdX2UKGgGR0CdacOoo/iYaAdN6ANoCEdAsCM/KZDzAnV9lChoBkdAnHCytq59VmgHTegDaAhHQLAkWD3dsSF1fZQoaAZHQJ4fvedkJ8hoB03oA2gIR0CwJPDMRpUQdX2UKGgGR0CgSNEF4cFRaAdN6ANoCEdAsCVEIcBEKHV9lChoBkdAnNvfpdKNAGgHTegDaAhHQLAqS8scyWR1fZQoaAZHQJh8dnpSrHVoB03oA2gIR0CwK4JYLb5/dX2UKGgGR0CMp17Gecx1aAdN6ANoCEdAsCxtnzxwynV9lChoBkdAnrWczImw7mgHTegDaAhHQLAs9aakRBh1fZQoaAZHQKBX2NxVAA1oB03oA2gIR0CwM3vKdQO4dX2UKGgGR0CcFfFMZgogaAdN6ANoCEdAsDSQyhzvJHV9lChoBkdAnjcduLrHEWgHTegDaAhHQLA1JgXdj5N1fZQoaAZHQKAuNSsr/bVoB03oA2gIR0CwNX3tv4ucdX2UKGgGR0Ce/25wwTM8aAdN6ANoCEdAsDqAMuvll3V9lChoBkdAnUcGcJ+lTGgHTegDaAhHQLA7yf029+R1fZQoaAZHQJ9yz/1g6U9oB03oA2gIR0CwPKmSIP9UdX2UKGgGR0Cfs2u4PPLQaAdN6ANoCEdAsD0tLoOhCnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a276786d49de95d6237092d8737cea3ca65e7bb5fb02167b6c4d73d60af38af0
|
3 |
+
size 56062
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:905433bc2cacd273dbc90ee9c09d616c30b91073754818e907aaca60a0f86928
|
3 |
+
size 56830
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5b94dc65e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5b94dc6670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5b94dc6700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5b94dc6790>", "_build": "<function ActorCriticPolicy._build at 0x7f5b94dc6820>", "forward": "<function ActorCriticPolicy.forward at 0x7f5b94dc68b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5b94dc6940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5b94dc69d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5b94dc6a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5b94dc6af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5b94dc6b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5b94dc6c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5b94db01e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676885706653437781, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJ/C+z34Cfi/mek9vqN6nz/siNI9nhDUP9sz3j4oSCK/gvMtP8cV/L84BVU/euSwv437oL/TIvA+P5hjvmOKYT7rtKy+0IpcPg/ERT+Dxse/gtp1Pk2PEr+6aU8+EBirPlKtNz8NYes+yT6/PiBR6b/cXVs/lEz8PcEwBj8+aSBA9Riovgsqwz9pZpi/YOn4v2XsXz/MJUY/A+iVPzsP7T67nrq/sYnFPtdcVz9SinXAKwqCv/deAj/Lzm4/eLGEvolgXL/MLxxAmzewvXopsr9SrTc/DWHrPsk+vz4gUem/2W80PwIFGz5PTQI/xoAmQBEjRb6sYe29w4tOv0tAA78rsFq/NvCCv/Z5ML8PojbAauUiv5aTTT82++A+kC9RP0k5sT4Xrf0/35AAv57ITsAKgEy///6Mv7BPpD+GrrY+bGayvw1h6z7JPr8+tXEMPw5bhT4mUXS+cK0oP9MwF0Bc9JS+sUCaPxjNir/96Zu/SKtPP0a1qT8JQKk9FsxwPpImMr9idZe/gLWVP2Z57Tuv7Hc+Gu/mv8i+kD0oHsI/P8c7v2xUCb5kaoo+tawQv1KtNz8NYes+yT6/PiBR6b+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACWrF62AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEJnNPQAAAAA5Q/G/AAAAADf7k70AAAAAWcH4PwAAAADfPeE9AAAAADE0AUAAAAAAN+GcPQAAAAA+Yvy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6y5RtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCsCBT4AAAAAxBv5vwAAAAD/0ms9AAAAAGH74D8AAAAA3SklvQAAAAAqxfs/AAAAAHHYm70AAAAARWzZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPDi97YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDMbvM8AAAAAP8qAMAAAAAAODC4vQAAAAC6rvI/AAAAALbGoL0AAAAAekfuPwAAAAANxO89AAAAAI61478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8hUS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9BzCPQAAAABnVd+/AAAAAFlxAb4AAAAAcOfiPwAAAAAD3Ta9AAAAAA9i6D8AAAAA5gMNvgAAAADOmuK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJw1qI9C/oKMAWyUTegDjAF0lEdArvIXMnqmj3V9lChoBkdAl89dn003wWgHTegDaAhHQK70VVYISlF1fZQoaAZHQJzRs7lq8DloB03oA2gIR0Cu9X2QXAM2dX2UKGgGR0CbId3LFGXpaAdN6ANoCEdArvYinYQJ5XV9lChoBkdAnAbsUdq+J2gHTegDaAhHQK8ESxB3Roh1fZQoaAZHQJqhVv73wkRoB03oA2gIR0CvBoPRRdhRdX2UKGgGR0CdY2B9kSVXaAdN6ANoCEdArweuMKkVOHV9lChoBkdAnhFalLvkR2gHTegDaAhHQK8IWpd8iOh1fZQoaAZHQJ5PmPcSGrVoB03oA2gIR0CvEiFdkauPdX2UKGgGR0CelWjBl+VkaAdN6ANoCEdArxRZuwX67HV9lChoBkdAncNflMh5gWgHTegDaAhHQK8VjvNNahZ1fZQoaAZHQJ0FRwsGxD9oB03oA2gIR0CvFj/ATIvKdX2UKGgGR0CaQjO4XoC/aAdN6ANoCEdAryRTKkl/pnV9lChoBkdAnZCD7hvR7mgHTegDaAhHQK8mh9H+ZPV1fZQoaAZHQJ0bJ98Z1mtoB03oA2gIR0CvJ7z6i0v5dX2UKGgGR0CbDekBCD28aAdN6ANoCEdAryhj2lEZznV9lChoBkdAnddTpkf9xmgHTegDaAhHQK8yFSb6P811fZQoaAZHQJ5ALQRf4RFoB03oA2gIR0CvNDIrFwT/dX2UKGgGR0Cerv5z5oGqaAdN6ANoCEdArzVj0e2d/nV9lChoBkdAnbxAYpDu0GgHTegDaAhHQK82BXvH93t1fZQoaAZHQJvh4mF8G9poB03oA2gIR0CvRC//m1YydX2UKGgGR0CYanqABkqdaAdN6ANoCEdAr0ZrRF7UonV9lChoBkdAnrafFzdUKmgHTegDaAhHQK9HlKVY6n11fZQoaAZHQJ0iMZqEeyRoB03oA2gIR0CvSDvuogmrdX2UKGgGR0Ce6FIU8FINaAdN6ANoCEdAr1H4NutOmHV9lChoBkdAneO5FgDzRWgHTegDaAhHQK9ULqY7aIx1fZQoaAZHQJYHnFglWwNoB03oA2gIR0CvVWN0NjLCdX2UKGgGR0CcH0si0OVgaAdN6ANoCEdAr1YMCaJAMXV9lChoBkdAniOllGwzL2gHTegDaAhHQK9kP1RtP551fZQoaAZHQJ2+ytlqagFoB03oA2gIR0CvZmwKrq+rdX2UKGgGR0Cc4lndO6/ZaAdN6ANoCEdAr2eg9A5aNnV9lChoBkdAm79W9Htnf2gHTegDaAhHQK9oRmRNh3J1fZQoaAZHQJrCicFyJbdoB03oA2gIR0CvcioDHOrydX2UKGgGR0CbLPxG2CumaAdN6ANoCEdAr3RirmyPdXV9lChoBkdAms0QSeyzHGgHTegDaAhHQK91lLBbfP51fZQoaAZHQJr/nSfDk2hoB03oA2gIR0CvdjxdY4hmdX2UKGgGR0Ca4bvHtF8YaAdN6ANoCEdAr4Rz7di2D3V9lChoBkdAnnspgb6xgWgHTegDaAhHQK+GoYvWYnh1fZQoaAZHQJ2FNIf8uSRoB03oA2gIR0Cvh9R5cC5mdX2UKGgGR0CfBa8LronsaAdN6ANoCEdAr4iBhWo3rHV9lChoBkdAnf25hOP/72gHTegDaAhHQK+StVcUuct1fZQoaAZHQIPxw+jdpItoB03oA2gIR0CvlQp8OTaCdX2UKGgGR0CRiIETxoZiaAdN6ANoCEdAr5Y8YVIqb3V9lChoBkdAnUBcfaHsTmgHTegDaAhHQK+XCAjps411fZQoaAZHQJ5j+0E5hjRoB03oA2gIR0CvpQ9+PRzBdX2UKGgGR0CYOLEvTPSlaAdN6ANoCEdAr6dB/5LytnV9lChoBkdAnGWix3V092gHTegDaAhHQK+oc/eLvTh1fZQoaAZHQJ+qZBY3eepoB03oA2gIR0CvqSC1qnFYdX2UKGgGR0Cd0bd43WFwaAdN6ANoCEdAr7LYCQtBfXV9lChoBkdAnY9h8UmD2GgHTegDaAhHQK+1HnkDIR11fZQoaAZHQJ3OD4fwI+poB03oA2gIR0CvtksUAT7EdX2UKGgGR0Cbc7HoX9BKaAdN6ANoCEdAr7ctXcQAdXV9lChoBkdAnLQ4xUNrkGgHTegDaAhHQK/FNbUwztV1fZQoaAZHQJ6M0V2zOX5oB03oA2gIR0Cvx1oRh+fAdX2UKGgGR0CfE8ryUcGUaAdN6ANoCEdAr8iCdOIqLHV9lChoBkdAnZkXi3ocJmgHTegDaAhHQK/JKUdq+Jx1fZQoaAZHQJ0XfNjbzshoB03oA2gIR0Cv0x5xR2r5dX2UKGgGR0CfftjLSuyNaAdN6ANoCEdAr9VIFzMibHV9lChoBkdAnDmVKGtZFGgHTegDaAhHQK/Wdjhky1x1fZQoaAZHQJ9wxGI9C/poB03oA2gIR0Cv12MqJ/G3dX2UKGgGR0CeFgpudf9haAdN6ANoCEdAr+U4AU+LWXV9lChoBkdAnP0mhysCDGgHTegDaAhHQK/neb0e2eB1fZQoaAZHQJ62Q4p+c6NoB03oA2gIR0Cv6LBeokzHdX2UKGgGR0Cd1DDcdo38aAdN6ANoCEdAr+ldsP8Q7XV9lChoBkdAns+dShrWRWgHTegDaAhHQK/zbcmjTKF1fZQoaAZHQJ11Oz0HyEtoB03oA2gIR0Cv9ZqI7/4qdX2UKGgGR0CdUblgMMJAaAdN6ANoCEdAr/buMuOCG3V9lChoBkdAmxyv1+RYBGgHTegDaAhHQK/3697F85V1fZQoaAZHQJhI7BDXvphoB03oA2gIR0CwAtr8zhxYdX2UKGgGR0Cbf0ARTS9eaAdN6ANoCEdAsAP31/Ue+3V9lChoBkdAmWC99+gDimgHTegDaAhHQLAEkjy4FzN1fZQoaAZHQJof+jgydnVoB03oA2gIR0CwBOgfp2U0dX2UKGgGR0CbjHryDqW1aAdN6ANoCEdAsAnuiFj/dnV9lChoBkdAknVKcd5prWgHTegDaAhHQLALCGxD9fl1fZQoaAZHQJzWbKeTV2BoB03oA2gIR0CwC9S6lLvkdX2UKGgGR0CKmrCAMDwIaAdN6ANoCEdAsAxXtBv733V9lChoBkdAmuXbn9vS+mgHTegDaAhHQLATIPwNLDh1fZQoaAZHQJoCKX/o7mxoB03oA2gIR0CwFESKaXrudX2UKGgGR0CaMGV8Ti84aAdN6ANoCEdAsBTbY150KnV9lChoBkdAnZq/R/mT1WgHTegDaAhHQLAVMvVVghN1fZQoaAZHQJqyKWC2+f1oB03oA2gIR0CwGhsABDG+dX2UKGgGR0CZaEptrKvFaAdN6ANoCEdAsBs0kC3gDXV9lChoBkdAmJfI9X9zfmgHTegDaAhHQLAcGI4VARl1fZQoaAZHQJudpaV2Rq5oB03oA2gIR0CwHJw8wHqvdX2UKGgGR0CdacOoo/iYaAdN6ANoCEdAsCM/KZDzAnV9lChoBkdAnHCytq59VmgHTegDaAhHQLAkWD3dsSF1fZQoaAZHQJ4fvedkJ8hoB03oA2gIR0CwJPDMRpUQdX2UKGgGR0CgSNEF4cFRaAdN6ANoCEdAsCVEIcBEKHV9lChoBkdAnNvfpdKNAGgHTegDaAhHQLAqS8scyWR1fZQoaAZHQJh8dnpSrHVoB03oA2gIR0CwK4JYLb5/dX2UKGgGR0CMp17Gecx1aAdN6ANoCEdAsCxtnzxwynV9lChoBkdAnrWczImw7mgHTegDaAhHQLAs9aakRBh1fZQoaAZHQKBX2NxVAA1oB03oA2gIR0CwM3vKdQO4dX2UKGgGR0CcFfFMZgogaAdN6ANoCEdAsDSQyhzvJHV9lChoBkdAnjcduLrHEWgHTegDaAhHQLA1JgXdj5N1fZQoaAZHQKAuNSsr/bVoB03oA2gIR0CwNX3tv4ucdX2UKGgGR0Ce/25wwTM8aAdN6ANoCEdAsDqAMuvll3V9lChoBkdAnUcGcJ+lTGgHTegDaAhHQLA7yf029+R1fZQoaAZHQJ9yz/1g6U9oB03oA2gIR0CwPKmSIP9UdX2UKGgGR0Cfs2u4PPLQaAdN6ANoCEdAsD0tLoOhCnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:194ea57a2ddfef8447ed1f5f48fc6b45ca98850eac7ede07b3c8f04682c99cfb
|
3 |
+
size 1105982
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2096.974736453267, "std_reward": 85.05983923609155, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-20T10:45:47.569154"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e7836273e83c6d407f0b9081fa5470b2d4eaab6fc05047ef3b1e339e6625f38
|
3 |
+
size 2136
|