pawlowskipawel
commited on
Commit
•
944293d
1
Parent(s):
579b82b
fix "only DaViT is supported for now"
Browse files- configuration_florence2.py +339 -340
configuration_florence2.py
CHANGED
@@ -1,340 +1,339 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
import warnings
|
15 |
-
""" Florence-2 configuration"""
|
16 |
-
|
17 |
-
from typing import Optional
|
18 |
-
|
19 |
-
from transformers import AutoConfig
|
20 |
-
from transformers.configuration_utils import PretrainedConfig
|
21 |
-
from transformers.utils import logging
|
22 |
-
|
23 |
-
logger = logging.get_logger(__name__)
|
24 |
-
|
25 |
-
class Florence2VisionConfig(PretrainedConfig):
|
26 |
-
r"""
|
27 |
-
This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel
|
28 |
-
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
29 |
-
defaults will yield a similar configuration to that of the Florence2VisionModel architecture.
|
30 |
-
|
31 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
32 |
-
documentation from [`PretrainedConfig`] for more information.
|
33 |
-
|
34 |
-
Args:
|
35 |
-
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
36 |
-
The dropout rate of the drop path layer.
|
37 |
-
patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]):
|
38 |
-
The patch size of the image.
|
39 |
-
patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]):
|
40 |
-
The patch stride of the image.
|
41 |
-
patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]):
|
42 |
-
The patch padding of the image.
|
43 |
-
patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]):
|
44 |
-
Whether to apply layer normalization before the patch embedding layer.
|
45 |
-
enable_checkpoint (`bool`, *optional*, defaults to False):
|
46 |
-
Whether to enable checkpointing.
|
47 |
-
dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]):
|
48 |
-
The dimension of the embedding layer.
|
49 |
-
num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
|
50 |
-
The number of attention heads.
|
51 |
-
num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
|
52 |
-
The number of groups.
|
53 |
-
depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]):
|
54 |
-
The depth of the model.
|
55 |
-
window_size (`int`, *optional*, defaults to 12):
|
56 |
-
The window size of the model.
|
57 |
-
projection_dim (`int`, *optional*, defaults to 1024):
|
58 |
-
The dimension of the projection layer.
|
59 |
-
visual_temporal_embedding (`dict`, *optional*):
|
60 |
-
The configuration of the visual temporal embedding.
|
61 |
-
image_pos_embed (`dict`, *optional*):
|
62 |
-
The configuration of the image position embedding.
|
63 |
-
image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]):
|
64 |
-
The source of the image feature.
|
65 |
-
Example:
|
66 |
-
|
67 |
-
```python
|
68 |
-
>>> from transformers import Florence2VisionConfig, Florence2VisionModel
|
69 |
-
|
70 |
-
>>> # Initializing a Florence2 Vision style configuration
|
71 |
-
>>> configuration = Florence2VisionConfig()
|
72 |
-
|
73 |
-
>>> # Initializing a model (with random weights)
|
74 |
-
>>> model = Florence2VisionModel(configuration)
|
75 |
-
|
76 |
-
>>> # Accessing the model configuration
|
77 |
-
>>> configuration = model.config
|
78 |
-
```"""
|
79 |
-
|
80 |
-
model_type = "
|
81 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
82 |
-
|
83 |
-
def __init__(
|
84 |
-
self,
|
85 |
-
drop_path_rate=0.1,
|
86 |
-
patch_size=[7, 3, 3, 3],
|
87 |
-
patch_stride=[4, 2, 2, 2],
|
88 |
-
patch_padding=[3, 1, 1, 1],
|
89 |
-
patch_prenorm=[False, True, True, True],
|
90 |
-
enable_checkpoint=False,
|
91 |
-
dim_embed=[256, 512, 1024, 2048],
|
92 |
-
num_heads=[8, 16, 32, 64],
|
93 |
-
num_groups=[8, 16, 32, 64],
|
94 |
-
depths=[1, 1, 9, 1],
|
95 |
-
window_size=12,
|
96 |
-
projection_dim=1024,
|
97 |
-
visual_temporal_embedding=None,
|
98 |
-
image_pos_embed=None,
|
99 |
-
image_feature_source=["spatial_avg_pool", "temporal_avg_pool"],
|
100 |
-
**kwargs,
|
101 |
-
):
|
102 |
-
self.drop_path_rate = drop_path_rate
|
103 |
-
self.patch_size = patch_size
|
104 |
-
self.patch_stride = patch_stride
|
105 |
-
self.patch_padding = patch_padding
|
106 |
-
self.patch_prenorm = patch_prenorm
|
107 |
-
self.enable_checkpoint = enable_checkpoint
|
108 |
-
self.dim_embed = dim_embed
|
109 |
-
self.num_heads = num_heads
|
110 |
-
self.num_groups = num_groups
|
111 |
-
self.depths = depths
|
112 |
-
self.window_size = window_size
|
113 |
-
self.projection_dim = projection_dim
|
114 |
-
self.visual_temporal_embedding = visual_temporal_embedding
|
115 |
-
self.image_pos_embed = image_pos_embed
|
116 |
-
self.image_feature_source = image_feature_source
|
117 |
-
|
118 |
-
super().__init__(**kwargs)
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
class Florence2LanguageConfig(PretrainedConfig):
|
123 |
-
r"""
|
124 |
-
This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART
|
125 |
-
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
126 |
-
defaults will yield a similar configuration to that of the BART
|
127 |
-
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
|
128 |
-
|
129 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
130 |
-
documentation from [`PretrainedConfig`] for more information.
|
131 |
-
|
132 |
-
|
133 |
-
Args:
|
134 |
-
vocab_size (`int`, *optional*, defaults to 51289):
|
135 |
-
Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the
|
136 |
-
`inputs_ids` passed when calling [`Florence2LanguageModel`].
|
137 |
-
d_model (`int`, *optional*, defaults to 1024):
|
138 |
-
Dimensionality of the layers and the pooler layer.
|
139 |
-
encoder_layers (`int`, *optional*, defaults to 12):
|
140 |
-
Number of encoder layers.
|
141 |
-
decoder_layers (`int`, *optional*, defaults to 12):
|
142 |
-
Number of decoder layers.
|
143 |
-
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
144 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
145 |
-
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
146 |
-
Number of attention heads for each attention layer in the Transformer decoder.
|
147 |
-
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
148 |
-
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
149 |
-
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
150 |
-
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
151 |
-
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
152 |
-
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
153 |
-
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
154 |
-
dropout (`float`, *optional*, defaults to 0.1):
|
155 |
-
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
156 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
157 |
-
The dropout ratio for the attention probabilities.
|
158 |
-
activation_dropout (`float`, *optional*, defaults to 0.0):
|
159 |
-
The dropout ratio for activations inside the fully connected layer.
|
160 |
-
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
161 |
-
The dropout ratio for classifier.
|
162 |
-
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
163 |
-
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
164 |
-
just in case (e.g., 512 or 1024 or 2048).
|
165 |
-
init_std (`float`, *optional*, defaults to 0.02):
|
166 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
167 |
-
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
168 |
-
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
169 |
-
for more details.
|
170 |
-
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
171 |
-
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
172 |
-
for more details.
|
173 |
-
scale_embedding (`bool`, *optional*, defaults to `False`):
|
174 |
-
Scale embeddings by diving by sqrt(d_model).
|
175 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
176 |
-
Whether or not the model should return the last key/values attentions (not used by all models).
|
177 |
-
num_labels (`int`, *optional*, defaults to 3):
|
178 |
-
The number of labels to use in [`Florence2LanguageForSequenceClassification`].
|
179 |
-
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
180 |
-
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
181 |
-
`eos_token_id`.
|
182 |
-
|
183 |
-
Example:
|
184 |
-
|
185 |
-
```python
|
186 |
-
>>> from transformers import Florence2LanguageConfig, Florence2LanguageModel
|
187 |
-
|
188 |
-
>>> # Initializing a Florence2 Language style configuration
|
189 |
-
>>> configuration = Florence2LanguageConfig()
|
190 |
-
|
191 |
-
>>> # Initializing a model (with random weights)
|
192 |
-
>>> model = Florence2LangaugeModel(configuration)
|
193 |
-
|
194 |
-
>>> # Accessing the model configuration
|
195 |
-
>>> configuration = model.config
|
196 |
-
```"""
|
197 |
-
|
198 |
-
model_type = "florence2_language"
|
199 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
200 |
-
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
201 |
-
|
202 |
-
def __init__(
|
203 |
-
self,
|
204 |
-
vocab_size=51289,
|
205 |
-
max_position_embeddings=1024,
|
206 |
-
encoder_layers=12,
|
207 |
-
encoder_ffn_dim=4096,
|
208 |
-
encoder_attention_heads=16,
|
209 |
-
decoder_layers=12,
|
210 |
-
decoder_ffn_dim=4096,
|
211 |
-
decoder_attention_heads=16,
|
212 |
-
encoder_layerdrop=0.0,
|
213 |
-
decoder_layerdrop=0.0,
|
214 |
-
activation_function="gelu",
|
215 |
-
d_model=1024,
|
216 |
-
dropout=0.1,
|
217 |
-
attention_dropout=0.0,
|
218 |
-
activation_dropout=0.0,
|
219 |
-
init_std=0.02,
|
220 |
-
classifier_dropout=0.0,
|
221 |
-
scale_embedding=False,
|
222 |
-
use_cache=True,
|
223 |
-
num_labels=3,
|
224 |
-
pad_token_id=1,
|
225 |
-
bos_token_id=0,
|
226 |
-
eos_token_id=2,
|
227 |
-
is_encoder_decoder=True,
|
228 |
-
decoder_start_token_id=2,
|
229 |
-
forced_eos_token_id=2,
|
230 |
-
**kwargs,
|
231 |
-
):
|
232 |
-
self.vocab_size = vocab_size
|
233 |
-
self.max_position_embeddings = max_position_embeddings
|
234 |
-
self.d_model = d_model
|
235 |
-
self.encoder_ffn_dim = encoder_ffn_dim
|
236 |
-
self.encoder_layers = encoder_layers
|
237 |
-
self.encoder_attention_heads = encoder_attention_heads
|
238 |
-
self.decoder_ffn_dim = decoder_ffn_dim
|
239 |
-
self.decoder_layers = decoder_layers
|
240 |
-
self.decoder_attention_heads = decoder_attention_heads
|
241 |
-
self.dropout = dropout
|
242 |
-
self.attention_dropout = attention_dropout
|
243 |
-
self.activation_dropout = activation_dropout
|
244 |
-
self.activation_function = activation_function
|
245 |
-
self.init_std = init_std
|
246 |
-
self.encoder_layerdrop = encoder_layerdrop
|
247 |
-
self.decoder_layerdrop = decoder_layerdrop
|
248 |
-
self.classifier_dropout = classifier_dropout
|
249 |
-
self.use_cache = use_cache
|
250 |
-
self.num_hidden_layers = encoder_layers
|
251 |
-
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
252 |
-
|
253 |
-
super().__init__(
|
254 |
-
num_labels=num_labels,
|
255 |
-
pad_token_id=pad_token_id,
|
256 |
-
bos_token_id=bos_token_id,
|
257 |
-
eos_token_id=eos_token_id,
|
258 |
-
is_encoder_decoder=is_encoder_decoder,
|
259 |
-
decoder_start_token_id=decoder_start_token_id,
|
260 |
-
forced_eos_token_id=forced_eos_token_id,
|
261 |
-
**kwargs,
|
262 |
-
)
|
263 |
-
|
264 |
-
# ensure backward compatibility for BART CNN models
|
265 |
-
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
|
266 |
-
self.forced_bos_token_id = self.bos_token_id
|
267 |
-
warnings.warn(
|
268 |
-
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
|
269 |
-
"The config can simply be saved and uploaded again to be fixed."
|
270 |
-
)
|
271 |
-
|
272 |
-
class Florence2Config(PretrainedConfig):
|
273 |
-
r"""
|
274 |
-
This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an
|
275 |
-
Florence-2 model according to the specified arguments, defining the model architecture.
|
276 |
-
|
277 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
278 |
-
documentation from [`PretrainedConfig`] for more information.
|
279 |
-
|
280 |
-
Args:
|
281 |
-
vision_config (`Florence2VisionConfig`, *optional*):
|
282 |
-
Custom vision config or dict
|
283 |
-
text_config (`Union[AutoConfig, dict]`, *optional*):
|
284 |
-
The config object of the text backbone.
|
285 |
-
ignore_index (`int`, *optional*, defaults to -100):
|
286 |
-
The ignore index for the loss function.
|
287 |
-
vocab_size (`int`, *optional*, defaults to 51289):
|
288 |
-
Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the
|
289 |
-
`inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`]
|
290 |
-
projection_dim (`int`, *optional*, defaults to 1024):
|
291 |
-
Dimension of the multimodal projection space.
|
292 |
-
|
293 |
-
Example:
|
294 |
-
|
295 |
-
```python
|
296 |
-
>>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig
|
297 |
-
|
298 |
-
>>> # Initializing a clip-like vision config
|
299 |
-
>>> vision_config = CLIPVisionConfig()
|
300 |
-
|
301 |
-
>>> # Initializing a Bart config
|
302 |
-
>>> text_config = BartConfig()
|
303 |
-
|
304 |
-
>>> # Initializing a Florence-2 configuration
|
305 |
-
>>> configuration = Florence2Config(vision_config, text_config)
|
306 |
-
|
307 |
-
>>> # Initializing a model from the florence-2 configuration
|
308 |
-
>>> model = Florence2ForConditionalGeneration(configuration)
|
309 |
-
|
310 |
-
>>> # Accessing the model configuration
|
311 |
-
>>> configuration = model.config
|
312 |
-
```"""
|
313 |
-
|
314 |
-
model_type = "florence2"
|
315 |
-
is_composition = False
|
316 |
-
|
317 |
-
def __init__(
|
318 |
-
self,
|
319 |
-
vision_config=None,
|
320 |
-
text_config=None,
|
321 |
-
ignore_index=-100,
|
322 |
-
vocab_size=51289,
|
323 |
-
projection_dim=1024,
|
324 |
-
**kwargs,
|
325 |
-
):
|
326 |
-
self.ignore_index = ignore_index
|
327 |
-
self.vocab_size = vocab_size
|
328 |
-
self.projection_dim = projection_dim
|
329 |
-
if vision_config is not None:
|
330 |
-
vision_config =
|
331 |
-
self.vision_config = vision_config
|
332 |
-
self.vocab_size = self.vocab_size
|
333 |
-
|
334 |
-
self.text_config = text_config
|
335 |
-
if text_config is not None:
|
336 |
-
self.text_config = Florence2LanguageConfig(**text_config)
|
337 |
-
|
338 |
-
|
339 |
-
super().__init__(**kwargs)
|
340 |
-
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import warnings
|
15 |
+
""" Florence-2 configuration"""
|
16 |
+
|
17 |
+
from typing import Optional
|
18 |
+
|
19 |
+
from transformers import AutoConfig
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
class Florence2VisionConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel
|
28 |
+
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
29 |
+
defaults will yield a similar configuration to that of the Florence2VisionModel architecture.
|
30 |
+
|
31 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
32 |
+
documentation from [`PretrainedConfig`] for more information.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
36 |
+
The dropout rate of the drop path layer.
|
37 |
+
patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]):
|
38 |
+
The patch size of the image.
|
39 |
+
patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]):
|
40 |
+
The patch stride of the image.
|
41 |
+
patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]):
|
42 |
+
The patch padding of the image.
|
43 |
+
patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]):
|
44 |
+
Whether to apply layer normalization before the patch embedding layer.
|
45 |
+
enable_checkpoint (`bool`, *optional*, defaults to False):
|
46 |
+
Whether to enable checkpointing.
|
47 |
+
dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]):
|
48 |
+
The dimension of the embedding layer.
|
49 |
+
num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
|
50 |
+
The number of attention heads.
|
51 |
+
num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
|
52 |
+
The number of groups.
|
53 |
+
depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]):
|
54 |
+
The depth of the model.
|
55 |
+
window_size (`int`, *optional*, defaults to 12):
|
56 |
+
The window size of the model.
|
57 |
+
projection_dim (`int`, *optional*, defaults to 1024):
|
58 |
+
The dimension of the projection layer.
|
59 |
+
visual_temporal_embedding (`dict`, *optional*):
|
60 |
+
The configuration of the visual temporal embedding.
|
61 |
+
image_pos_embed (`dict`, *optional*):
|
62 |
+
The configuration of the image position embedding.
|
63 |
+
image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]):
|
64 |
+
The source of the image feature.
|
65 |
+
Example:
|
66 |
+
|
67 |
+
```python
|
68 |
+
>>> from transformers import Florence2VisionConfig, Florence2VisionModel
|
69 |
+
|
70 |
+
>>> # Initializing a Florence2 Vision style configuration
|
71 |
+
>>> configuration = Florence2VisionConfig()
|
72 |
+
|
73 |
+
>>> # Initializing a model (with random weights)
|
74 |
+
>>> model = Florence2VisionModel(configuration)
|
75 |
+
|
76 |
+
>>> # Accessing the model configuration
|
77 |
+
>>> configuration = model.config
|
78 |
+
```"""
|
79 |
+
|
80 |
+
model_type = "davit"
|
81 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
82 |
+
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
drop_path_rate=0.1,
|
86 |
+
patch_size=[7, 3, 3, 3],
|
87 |
+
patch_stride=[4, 2, 2, 2],
|
88 |
+
patch_padding=[3, 1, 1, 1],
|
89 |
+
patch_prenorm=[False, True, True, True],
|
90 |
+
enable_checkpoint=False,
|
91 |
+
dim_embed=[256, 512, 1024, 2048],
|
92 |
+
num_heads=[8, 16, 32, 64],
|
93 |
+
num_groups=[8, 16, 32, 64],
|
94 |
+
depths=[1, 1, 9, 1],
|
95 |
+
window_size=12,
|
96 |
+
projection_dim=1024,
|
97 |
+
visual_temporal_embedding=None,
|
98 |
+
image_pos_embed=None,
|
99 |
+
image_feature_source=["spatial_avg_pool", "temporal_avg_pool"],
|
100 |
+
**kwargs,
|
101 |
+
):
|
102 |
+
self.drop_path_rate = drop_path_rate
|
103 |
+
self.patch_size = patch_size
|
104 |
+
self.patch_stride = patch_stride
|
105 |
+
self.patch_padding = patch_padding
|
106 |
+
self.patch_prenorm = patch_prenorm
|
107 |
+
self.enable_checkpoint = enable_checkpoint
|
108 |
+
self.dim_embed = dim_embed
|
109 |
+
self.num_heads = num_heads
|
110 |
+
self.num_groups = num_groups
|
111 |
+
self.depths = depths
|
112 |
+
self.window_size = window_size
|
113 |
+
self.projection_dim = projection_dim
|
114 |
+
self.visual_temporal_embedding = visual_temporal_embedding
|
115 |
+
self.image_pos_embed = image_pos_embed
|
116 |
+
self.image_feature_source = image_feature_source
|
117 |
+
|
118 |
+
super().__init__(**kwargs)
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
class Florence2LanguageConfig(PretrainedConfig):
|
123 |
+
r"""
|
124 |
+
This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART
|
125 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
126 |
+
defaults will yield a similar configuration to that of the BART
|
127 |
+
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
|
128 |
+
|
129 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
130 |
+
documentation from [`PretrainedConfig`] for more information.
|
131 |
+
|
132 |
+
|
133 |
+
Args:
|
134 |
+
vocab_size (`int`, *optional*, defaults to 51289):
|
135 |
+
Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the
|
136 |
+
`inputs_ids` passed when calling [`Florence2LanguageModel`].
|
137 |
+
d_model (`int`, *optional*, defaults to 1024):
|
138 |
+
Dimensionality of the layers and the pooler layer.
|
139 |
+
encoder_layers (`int`, *optional*, defaults to 12):
|
140 |
+
Number of encoder layers.
|
141 |
+
decoder_layers (`int`, *optional*, defaults to 12):
|
142 |
+
Number of decoder layers.
|
143 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
144 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
145 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
146 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
147 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
148 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
149 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
150 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
151 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
152 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
153 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
154 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
155 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
156 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
157 |
+
The dropout ratio for the attention probabilities.
|
158 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
159 |
+
The dropout ratio for activations inside the fully connected layer.
|
160 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
161 |
+
The dropout ratio for classifier.
|
162 |
+
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
163 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
164 |
+
just in case (e.g., 512 or 1024 or 2048).
|
165 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
166 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
167 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
168 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
169 |
+
for more details.
|
170 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
171 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
172 |
+
for more details.
|
173 |
+
scale_embedding (`bool`, *optional*, defaults to `False`):
|
174 |
+
Scale embeddings by diving by sqrt(d_model).
|
175 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
176 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
177 |
+
num_labels (`int`, *optional*, defaults to 3):
|
178 |
+
The number of labels to use in [`Florence2LanguageForSequenceClassification`].
|
179 |
+
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
180 |
+
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
181 |
+
`eos_token_id`.
|
182 |
+
|
183 |
+
Example:
|
184 |
+
|
185 |
+
```python
|
186 |
+
>>> from transformers import Florence2LanguageConfig, Florence2LanguageModel
|
187 |
+
|
188 |
+
>>> # Initializing a Florence2 Language style configuration
|
189 |
+
>>> configuration = Florence2LanguageConfig()
|
190 |
+
|
191 |
+
>>> # Initializing a model (with random weights)
|
192 |
+
>>> model = Florence2LangaugeModel(configuration)
|
193 |
+
|
194 |
+
>>> # Accessing the model configuration
|
195 |
+
>>> configuration = model.config
|
196 |
+
```"""
|
197 |
+
|
198 |
+
model_type = "florence2_language"
|
199 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
200 |
+
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
201 |
+
|
202 |
+
def __init__(
|
203 |
+
self,
|
204 |
+
vocab_size=51289,
|
205 |
+
max_position_embeddings=1024,
|
206 |
+
encoder_layers=12,
|
207 |
+
encoder_ffn_dim=4096,
|
208 |
+
encoder_attention_heads=16,
|
209 |
+
decoder_layers=12,
|
210 |
+
decoder_ffn_dim=4096,
|
211 |
+
decoder_attention_heads=16,
|
212 |
+
encoder_layerdrop=0.0,
|
213 |
+
decoder_layerdrop=0.0,
|
214 |
+
activation_function="gelu",
|
215 |
+
d_model=1024,
|
216 |
+
dropout=0.1,
|
217 |
+
attention_dropout=0.0,
|
218 |
+
activation_dropout=0.0,
|
219 |
+
init_std=0.02,
|
220 |
+
classifier_dropout=0.0,
|
221 |
+
scale_embedding=False,
|
222 |
+
use_cache=True,
|
223 |
+
num_labels=3,
|
224 |
+
pad_token_id=1,
|
225 |
+
bos_token_id=0,
|
226 |
+
eos_token_id=2,
|
227 |
+
is_encoder_decoder=True,
|
228 |
+
decoder_start_token_id=2,
|
229 |
+
forced_eos_token_id=2,
|
230 |
+
**kwargs,
|
231 |
+
):
|
232 |
+
self.vocab_size = vocab_size
|
233 |
+
self.max_position_embeddings = max_position_embeddings
|
234 |
+
self.d_model = d_model
|
235 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
236 |
+
self.encoder_layers = encoder_layers
|
237 |
+
self.encoder_attention_heads = encoder_attention_heads
|
238 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
239 |
+
self.decoder_layers = decoder_layers
|
240 |
+
self.decoder_attention_heads = decoder_attention_heads
|
241 |
+
self.dropout = dropout
|
242 |
+
self.attention_dropout = attention_dropout
|
243 |
+
self.activation_dropout = activation_dropout
|
244 |
+
self.activation_function = activation_function
|
245 |
+
self.init_std = init_std
|
246 |
+
self.encoder_layerdrop = encoder_layerdrop
|
247 |
+
self.decoder_layerdrop = decoder_layerdrop
|
248 |
+
self.classifier_dropout = classifier_dropout
|
249 |
+
self.use_cache = use_cache
|
250 |
+
self.num_hidden_layers = encoder_layers
|
251 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
252 |
+
|
253 |
+
super().__init__(
|
254 |
+
num_labels=num_labels,
|
255 |
+
pad_token_id=pad_token_id,
|
256 |
+
bos_token_id=bos_token_id,
|
257 |
+
eos_token_id=eos_token_id,
|
258 |
+
is_encoder_decoder=is_encoder_decoder,
|
259 |
+
decoder_start_token_id=decoder_start_token_id,
|
260 |
+
forced_eos_token_id=forced_eos_token_id,
|
261 |
+
**kwargs,
|
262 |
+
)
|
263 |
+
|
264 |
+
# ensure backward compatibility for BART CNN models
|
265 |
+
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
|
266 |
+
self.forced_bos_token_id = self.bos_token_id
|
267 |
+
warnings.warn(
|
268 |
+
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
|
269 |
+
"The config can simply be saved and uploaded again to be fixed."
|
270 |
+
)
|
271 |
+
|
272 |
+
class Florence2Config(PretrainedConfig):
|
273 |
+
r"""
|
274 |
+
This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an
|
275 |
+
Florence-2 model according to the specified arguments, defining the model architecture.
|
276 |
+
|
277 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
278 |
+
documentation from [`PretrainedConfig`] for more information.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
vision_config (`Florence2VisionConfig`, *optional*):
|
282 |
+
Custom vision config or dict
|
283 |
+
text_config (`Union[AutoConfig, dict]`, *optional*):
|
284 |
+
The config object of the text backbone.
|
285 |
+
ignore_index (`int`, *optional*, defaults to -100):
|
286 |
+
The ignore index for the loss function.
|
287 |
+
vocab_size (`int`, *optional*, defaults to 51289):
|
288 |
+
Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the
|
289 |
+
`inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`]
|
290 |
+
projection_dim (`int`, *optional*, defaults to 1024):
|
291 |
+
Dimension of the multimodal projection space.
|
292 |
+
|
293 |
+
Example:
|
294 |
+
|
295 |
+
```python
|
296 |
+
>>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig
|
297 |
+
|
298 |
+
>>> # Initializing a clip-like vision config
|
299 |
+
>>> vision_config = CLIPVisionConfig()
|
300 |
+
|
301 |
+
>>> # Initializing a Bart config
|
302 |
+
>>> text_config = BartConfig()
|
303 |
+
|
304 |
+
>>> # Initializing a Florence-2 configuration
|
305 |
+
>>> configuration = Florence2Config(vision_config, text_config)
|
306 |
+
|
307 |
+
>>> # Initializing a model from the florence-2 configuration
|
308 |
+
>>> model = Florence2ForConditionalGeneration(configuration)
|
309 |
+
|
310 |
+
>>> # Accessing the model configuration
|
311 |
+
>>> configuration = model.config
|
312 |
+
```"""
|
313 |
+
|
314 |
+
model_type = "florence2"
|
315 |
+
is_composition = False
|
316 |
+
|
317 |
+
def __init__(
|
318 |
+
self,
|
319 |
+
vision_config=None,
|
320 |
+
text_config=None,
|
321 |
+
ignore_index=-100,
|
322 |
+
vocab_size=51289,
|
323 |
+
projection_dim=1024,
|
324 |
+
**kwargs,
|
325 |
+
):
|
326 |
+
self.ignore_index = ignore_index
|
327 |
+
self.vocab_size = vocab_size
|
328 |
+
self.projection_dim = projection_dim
|
329 |
+
if vision_config is not None:
|
330 |
+
vision_config = Florence2VisionConfig(**vision_config)
|
331 |
+
self.vision_config = vision_config
|
332 |
+
self.vocab_size = self.vocab_size
|
333 |
+
|
334 |
+
self.text_config = text_config
|
335 |
+
if text_config is not None:
|
336 |
+
self.text_config = Florence2LanguageConfig(**text_config)
|
337 |
+
|
338 |
+
|
339 |
+
super().__init__(**kwargs)
|
|