File size: 126,723 Bytes
33ee8e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" PyTorch Florence-2 model."""
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import math
import torch
import torch.utils.checkpoint
from torch import nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from torch.nn import CrossEntropyLoss 
from collections import OrderedDict
from einops import rearrange
from timm.models.layers import DropPath, trunc_normal_

from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_2_available,
    logging,
    replace_return_docstrings,
    is_flash_attn_2_available,
    is_flash_attn_greater_or_equal_2_10,
)
from .configuration_florence2 import Florence2Config 
from .configuration_florence2 import Florence2LanguageConfig
from .configuration_florence2 import Florence2VisionConfig


from transformers.activations import ACT2FN
from transformers.modeling_attn_mask_utils import (
    _prepare_4d_attention_mask,
    _prepare_4d_attention_mask_for_sdpa,
    _prepare_4d_causal_attention_mask,
    _prepare_4d_causal_attention_mask_for_sdpa,
)
from transformers.modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPastAndCrossAttentions,
    Seq2SeqLMOutput,
    Seq2SeqModelOutput,
)


if is_flash_attn_2_available():
    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "Florence2Config"

class LearnedAbsolutePositionEmbedding2D(nn.Module):
    """
    This module learns positional embeddings up to a fixed maximum size.
    """

    def __init__(self, embedding_dim=256, num_pos=50):
        super().__init__()
        self.row_embeddings = nn.Embedding(num_pos, embedding_dim // 2)
        self.column_embeddings = nn.Embedding(num_pos, embedding_dim - (embedding_dim // 2))

    def forward(self, pixel_values):
        """
        pixel_values: (batch_size, height, width, num_channels) 
        returns: (batch_size, height, width, embedding_dim * 2)
        """
        if len(pixel_values.shape) != 4:
            raise ValueError('pixel_values must be a 4D tensor')
        height, width = pixel_values.shape[1:3]
        width_values = torch.arange(width, device=pixel_values.device)
        height_values = torch.arange(height, device=pixel_values.device)
        x_emb = self.column_embeddings(width_values)
        y_emb = self.row_embeddings(height_values)
        # (height, width, embedding_dim * 2)
        pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
        # (embedding_dim * 2, height, width)
        pos = pos.permute(2, 0, 1)
        pos = pos.unsqueeze(0)
        # (batch_size, embedding_dim * 2, height, width)
        pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
        # (batch_size, height, width, embedding_dim * 2)
        pos = pos.permute(0, 2, 3, 1)
        return pos

class PositionalEmbeddingCosine1D(nn.Module):
    """
    This class implements a very simple positional encoding. It follows closely
    the encoder from the link below:
    https://pytorch.org/tutorials/beginner/translation_transformer.html

    Args:
        embed_dim: The dimension of the embeddings.
        dropout_prob: The dropout probability.
        max_seq_len: The maximum length to precompute the positional encodings.
    """
    def __init__(
            self,
            embed_dim: int = 512,
            max_seq_len: int = 1024) -> None:
        super(PositionalEmbeddingCosine1D, self).__init__()
        self.embed_dim = embed_dim
        self.max_seq_len = max_seq_len
        # Generate the sinusoidal arrays.
        factor = math.log(10000)
        denominator = torch.exp(
            -factor * torch.arange(0, self.embed_dim, 2) / self.embed_dim)
        # Matrix where rows correspond to a positional embedding as a function
        # of the position index (i.e., the row index).
        frequencies = \
            torch.arange(0, self.max_seq_len) \
            .reshape(self.max_seq_len, 1) * denominator
        pos_idx_to_embed = torch.zeros((self.max_seq_len, self.embed_dim))
        # Populate uneven entries.
        pos_idx_to_embed[:, 0::2] = torch.sin(frequencies)
        pos_idx_to_embed[:, 1::2] = torch.cos(frequencies)
        # Save the positional embeddings in a constant buffer.
        self.register_buffer("pos_idx_to_embed", pos_idx_to_embed)

    def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
        """
        Args:
            seq_embeds: The sequence embeddings in order. Allowed size:
                1. [T, D], where T is the length of the sequence, and D is the
                frame embedding dimension.
                2. [B, T, D], where B is the batch size and T and D are the
                same as above.

        Returns a tensor of with the same dimensions as the input: i.e.,
        [1, T, D] or [T, D].
        """
        shape_len = len(seq_embeds.shape)
        assert 2 <= shape_len <= 3
        len_seq = seq_embeds.size(-2)
        assert len_seq <= self.max_seq_len
        pos_embeds = self.pos_idx_to_embed[0:seq_embeds.size(-2), :]
        # Adapt pre-computed positional embeddings to the input.
        if shape_len == 3:
            pos_embeds = pos_embeds.view(
                (1, pos_embeds.size(0), pos_embeds.size(1)))
        return pos_embeds


class LearnedAbsolutePositionEmbedding1D(nn.Module):
    """
    Learnable absolute positional embeddings for 1D sequences.

    Args:
        embed_dim: The dimension of the embeddings.
        max_seq_len: The maximum length to precompute the positional encodings.
    """
    def __init__(
            self,
            embedding_dim: int = 512,
            num_pos: int = 1024) -> None:
        super(LearnedAbsolutePositionEmbedding1D, self).__init__()
        self.embeddings = nn.Embedding(num_pos, embedding_dim)
        self.num_pos = num_pos

    def forward(self, seq_embeds: torch.Tensor) -> torch.Tensor:
        """
        Args:
            seq_embeds: The sequence embeddings in order. Allowed size:
                1. [T, D], where T is the length of the sequence, and D is the
                frame embedding dimension.
                2. [B, T, D], where B is the batch size and T and D are the
                same as above.

        Returns a tensor of with the same dimensions as the input: i.e.,
        [1, T, D] or [T, D].
        """
        shape_len = len(seq_embeds.shape)
        assert 2 <= shape_len <= 3
        len_seq = seq_embeds.size(-2)
        assert len_seq <= self.num_pos
        # [T, D]
        pos_embeds = self.embeddings(torch.arange(len_seq).to(seq_embeds.device))
        # Adapt pre-computed positional embeddings to the input.
        if shape_len == 3:
            pos_embeds = pos_embeds.view(
                (1, pos_embeds.size(0), pos_embeds.size(1)))
        return pos_embeds



class MySequential(nn.Sequential):
    def forward(self, *inputs):
        for module in self._modules.values():
            if type(inputs) == tuple:
                inputs = module(*inputs)
            else:
                inputs = module(inputs)
        return inputs


class PreNorm(nn.Module):
    def __init__(self, norm, fn, drop_path=None):
        super().__init__()
        self.norm = norm
        self.fn = fn
        self.drop_path = drop_path

    def forward(self, x, *args, **kwargs):
        shortcut = x
        if self.norm != None:
            x, size = self.fn(self.norm(x), *args, **kwargs)
        else:
            x, size = self.fn(x, *args, **kwargs)

        if self.drop_path:
            x = self.drop_path(x)

        x = shortcut + x

        return x, size


class Mlp(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.net = nn.Sequential(OrderedDict([
            ("fc1", nn.Linear(in_features, hidden_features)),
            ("act", act_layer()),
            ("fc2", nn.Linear(hidden_features, out_features))
        ]))

    def forward(self, x, size):
        return self.net(x), size


class DepthWiseConv2d(nn.Module):
    def __init__(
        self,
        dim_in,
        kernel_size,
        padding,
        stride,
        bias=True,
    ):
        super().__init__()
        self.dw = nn.Conv2d(
            dim_in, dim_in,
            kernel_size=kernel_size,
            padding=padding,
            groups=dim_in,
            stride=stride,
            bias=bias
        )

    def forward(self, x, size):
        B, N, C = x.shape
        H, W = size
        assert N == H * W

        x = self.dw(x.transpose(1, 2).view(B, C, H, W))
        size = (x.size(-2), x.size(-1))
        x = x.flatten(2).transpose(1, 2)
        return x, size


class ConvEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(
        self,
        patch_size=7,
        in_chans=3,
        embed_dim=64,
        stride=4,
        padding=2,
        norm_layer=None,
        pre_norm=True
    ):
        super().__init__()
        self.patch_size = patch_size

        self.proj = nn.Conv2d(
            in_chans, embed_dim,
            kernel_size=patch_size,
            stride=stride,
            padding=padding
        )

        dim_norm = in_chans if pre_norm else embed_dim
        self.norm = norm_layer(dim_norm) if norm_layer else None

        self.pre_norm = pre_norm

    def forward(self, x, size):
        H, W = size
        if len(x.size()) == 3:
            if self.norm and self.pre_norm:
                x = self.norm(x)
            x = rearrange(
                x, 'b (h w) c -> b c h w',
                h=H, w=W
            )

        x = self.proj(x)

        _, _, H, W = x.shape
        x = rearrange(x, 'b c h w -> b (h w) c')
        if self.norm and not self.pre_norm:
            x = self.norm(x)

        return x, (H, W)


class ChannelAttention(nn.Module):

    def __init__(self, dim, groups=8, qkv_bias=True):
        super().__init__()

        self.groups = groups
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim)

    def forward(self, x, size):
        B, N, C = x.shape

        qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * (float(N) ** -0.5)
        attention = q.transpose(-1, -2) @ k
        attention = attention.softmax(dim=-1)
        x = (attention @ v.transpose(-1, -2)).transpose(-1, -2)
        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        return x, size


class ChannelBlock(nn.Module):

    def __init__(self, dim, groups, mlp_ratio=4., qkv_bias=True,
                 drop_path_rate=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 conv_at_attn=True, conv_at_ffn=True):
        super().__init__()

        drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

        self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
        self.channel_attn = PreNorm(
            norm_layer(dim),
            ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias),
            drop_path
        )
        self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
        self.ffn = PreNorm(
            norm_layer(dim),
            Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer),
            drop_path
        )

    def forward(self, x, size):
        if self.conv1:
            x, size = self.conv1(x, size)
        x, size = self.channel_attn(x, size)

        if self.conv2:
            x, size = self.conv2(x, size)
        x, size = self.ffn(x, size)

        return x, size


def window_partition(x, window_size: int):
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
    return windows


def window_reverse(windows, batch_size: int, window_size: int, H: int, W: int):
    B = batch_size 
    # this will cause onnx conversion failed for dynamic axis, because treated as constant
    # int(windows.shape[0] / (H * W / window_size / window_size)) 
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class WindowAttention(nn.Module):
    def __init__(self, dim, num_heads, window_size, qkv_bias=True):

        super().__init__()
        self.dim = dim
        self.window_size = window_size
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = float(head_dim) ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim)

        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, size):

        H, W = size
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        x = x.view(B, H, W, C)

        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        x = window_partition(x, self.window_size)
        x = x.view(-1, self.window_size * self.window_size, C)

        # W-MSA/SW-MSA
        # attn_windows = self.attn(x_windows)

        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))
        attn = self.softmax(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)

        # merge windows
        x = x.view(
            -1, self.window_size, self.window_size, C
        )
        x = window_reverse(x, B, self.window_size, Hp, Wp)

        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        return x, size


class SpatialBlock(nn.Module):

    def __init__(self, dim, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, drop_path_rate=0., act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm, conv_at_attn=True, conv_at_ffn=True):
        super().__init__()

        drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

        self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None
        self.window_attn = PreNorm(
            norm_layer(dim),
            WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias),
            drop_path
        )
        self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None
        self.ffn = PreNorm(
            norm_layer(dim),
            Mlp(in_features=dim, hidden_features=int(dim*mlp_ratio), act_layer=act_layer),
            drop_path
        )

    def forward(self, x, size):
        if self.conv1:
            x, size = self.conv1(x, size)
        x, size = self.window_attn(x, size)

        if self.conv2:
            x, size = self.conv2(x, size)
        x, size = self.ffn(x, size)
        return x, size


class DaViT(nn.Module):
    """ DaViT: Dual-Attention Transformer

    Args:
        in_chans (int): Number of input image channels. Default: 3.
        num_classes (int): Number of classes for classification head. Default: 1000.
        patch_size (tuple(int)): Patch size of convolution in different stages. Default: (7, 2, 2, 2).
        patch_stride (tuple(int)): Patch stride of convolution in different stages. Default: (4, 2, 2, 2).
        patch_padding (tuple(int)): Patch padding of convolution in different stages. Default: (3, 0, 0, 0).
        patch_prenorm (tuple(bool)): If True, perform norm before convlution layer. Default: (True, False, False, False).
        embed_dims (tuple(int)): Patch embedding dimension in different stages. Default: (64, 128, 192, 256).
        num_heads (tuple(int)): Number of spatial attention heads in different stages. Default: (4, 8, 12, 16).
        num_groups (tuple(int)): Number of channel groups in different stages. Default: (4, 8, 12, 16).
        window_size (int): Window size. Default: 7.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True.
        drop_path_rate (float): Stochastic depth rate. Default: 0.1.
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        enable_checkpoint (bool): If True, enable checkpointing. Default: False.
        conv_at_attn (bool): If True, performe depthwise convolution before attention layer. Default: True.
        conv_at_ffn (bool): If True, performe depthwise convolution before ffn layer. Default: True.
    """

    def __init__(
        self,
        in_chans=3,
        num_classes=1000,
        depths=(1, 1, 3, 1),
        patch_size=(7, 2, 2, 2),
        patch_stride=(4, 2, 2, 2),
        patch_padding=(3, 0, 0, 0),
        patch_prenorm=(False, False, False, False),
        embed_dims=(64, 128, 192, 256),
        num_heads=(3, 6, 12, 24),
        num_groups=(3, 6, 12, 24),
        window_size=7,
        mlp_ratio=4.,
        qkv_bias=True,
        drop_path_rate=0.1,
        norm_layer=nn.LayerNorm,
        enable_checkpoint=False,
        conv_at_attn=True,
        conv_at_ffn=True,
     ):
        super().__init__()

        self.num_classes = num_classes
        self.embed_dims = embed_dims
        self.num_heads = num_heads
        self.num_groups = num_groups
        self.num_stages = len(self.embed_dims)
        self.enable_checkpoint = enable_checkpoint
        assert self.num_stages == len(self.num_heads) == len(self.num_groups)

        num_stages = len(embed_dims)
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)*2)]

        depth_offset = 0
        convs = []
        blocks = []
        for i in range(num_stages):
            conv_embed = ConvEmbed(
                patch_size=patch_size[i],
                stride=patch_stride[i],
                padding=patch_padding[i],
                in_chans=in_chans if i == 0 else self.embed_dims[i - 1],
                embed_dim=self.embed_dims[i],
                norm_layer=norm_layer,
                pre_norm=patch_prenorm[i]
            )
            convs.append(conv_embed)

            block = MySequential(
                *[
                    MySequential(OrderedDict([
                        (
                            'spatial_block', SpatialBlock(
                                embed_dims[i],
                                num_heads[i],
                                window_size,
                                drop_path_rate=dpr[depth_offset+j*2],
                                qkv_bias=qkv_bias,
                                mlp_ratio=mlp_ratio,
                                conv_at_attn=conv_at_attn,
                                conv_at_ffn=conv_at_ffn,
                            )
                        ),
                        (
                            'channel_block', ChannelBlock(
                                embed_dims[i],
                                num_groups[i],
                                drop_path_rate=dpr[depth_offset+j*2+1],
                                qkv_bias=qkv_bias,
                                mlp_ratio=mlp_ratio,
                                conv_at_attn=conv_at_attn,
                                conv_at_ffn=conv_at_ffn,
                            )
                        )
                    ])) for j in range(depths[i])
                ]
            )
            blocks.append(block)
            depth_offset += depths[i]*2

        self.convs = nn.ModuleList(convs)
        self.blocks = nn.ModuleList(blocks)

        self.norms = norm_layer(self.embed_dims[-1])
        self.avgpool = nn.AdaptiveAvgPool1d(1)
        self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    @property
    def dim_out(self):
        return self.embed_dims[-1]

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.Conv2d):
            nn.init.normal_(m.weight, std=0.02)
            for name, _ in m.named_parameters():
                if name in ['bias']:
                    nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.weight, 1.0)
            nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.BatchNorm2d):
            nn.init.constant_(m.weight, 1.0)
            nn.init.constant_(m.bias, 0)

    def forward_features_unpool(self, x):
        """
        forward until avg pooling 
        Args:
            x (_type_): input image tensor
        """
        input_size = (x.size(2), x.size(3))
        for conv, block in zip(self.convs, self.blocks):
            x, input_size = conv(x, input_size)
            if self.enable_checkpoint:
                x, input_size = checkpoint.checkpoint(block, x, input_size)
            else:
                x, input_size = block(x, input_size)
        return x

    def forward_features(self, x):
        x = self.forward_features_unpool(x)

        # (batch_size, num_tokens, token_dim)
        x = self.avgpool(x.transpose(1, 2))
        # (batch_size, 1, num_tokens)
        x = torch.flatten(x, 1)
        x = self.norms(x)

        return x

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x
    
    @classmethod
    def from_config(cls, config):
        return cls(
            depths=config.depths,
            embed_dims=config.dim_embed,
            num_heads=config.num_heads,
            num_groups=config.num_groups,
            patch_size=config.patch_size,
            patch_stride=config.patch_stride,
            patch_padding=config.patch_padding,
            patch_prenorm=config.patch_prenorm,
            drop_path_rate=config.drop_path_rate,
            window_size=config.window_size,
        )




if is_flash_attn_2_available():
    from flash_attn import flash_attn_func, flash_attn_varlen_func
    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa

# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )


def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
    """
    Shift input ids one token to the right.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    shifted_input_ids[:, 0] = decoder_start_token_id

    if pad_token_id is None:
        raise ValueError("self.model.config.pad_token_id has to be defined.")
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids


class Florence2LearnedPositionalEmbedding(nn.Embedding):
    """
    This module learns positional embeddings up to a fixed maximum size.
    """

    def __init__(self, num_embeddings: int, embedding_dim: int):
        # Florence2 is set up so that if padding_idx is specified then offset the embedding ids by 2
        # and adjust num_embeddings appropriately. Other models don't have this hack
        self.offset = 2
        super().__init__(num_embeddings + self.offset, embedding_dim)

    def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
        """`input_ids' shape is expected to be [bsz x seqlen]."""

        bsz, seq_len = input_ids.shape[:2]
        positions = torch.arange(
            past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
        ).expand(bsz, -1)

        return super().forward(positions + self.offset)


class Florence2ScaledWordEmbedding(nn.Embedding):
    """
    This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
    """

    def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
        super().__init__(num_embeddings, embedding_dim, padding_idx)
        self.embed_scale = embed_scale

    def forward(self, input_ids: torch.Tensor):
        return super().forward(input_ids) * self.embed_scale


class Florence2Attention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
        is_causal: bool = False,
        config: Optional[Florence2LanguageConfig] = None,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        self.config = config

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
        self.scaling = self.head_dim**-0.5
        self.is_decoder = is_decoder
        self.is_causal = is_causal

        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None

        bsz, tgt_len, _ = hidden_states.size()

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        # get key, value proj
        # `past_key_value[0].shape[2] == key_value_states.shape[1]`
        # is checking that the `sequence_length` of the `past_key_value` is the same as
        # the provided `key_value_states` to support prefix tuning
        if (
            is_cross_attention
            and past_key_value is not None
            and past_key_value[0].shape[2] == key_value_states.shape[1]
        ):
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.reshape(*proj_shape)
        value_states = value_states.reshape(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
                f" {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if layer_head_mask is not None:
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
                    f" {layer_head_mask.size()}"
                )
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if output_attentions:
            # this operation is a bit awkward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to be reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = torch.bmm(attn_probs, value_states)

        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned across GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped, past_key_value


class Florence2FlashAttention2(Florence2Attention):
    """
    Florence2 flash attention module. This module inherits from `Florence2Attention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
        # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
        # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()

    def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        # Florence2FlashAttention2 attention does not support output_attentions
        if output_attentions:
            raise ValueError("Florence2FlashAttention2 attention does not support output_attentions")

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None

        bsz, q_len, _ = hidden_states.size()

        # get query proj
        query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
        # get key, value proj
        # `past_key_value[0].shape[2] == key_value_states.shape[1]`
        # is checking that the `sequence_length` of the `past_key_value` is the same as
        # the provided `key_value_states` to support prefix tuning
        if (
            is_cross_attention
            and past_key_value is not None
            and past_key_value[0].shape[2] == key_value_states.shape[1]
        ):
            # reuse k,v, cross_attentions
            key_states = past_key_value[0].transpose(1, 2)
            value_states = past_key_value[1].transpose(1, 2)
        elif is_cross_attention:
            # cross_attentions
            key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
            value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
        else:
            # self_attention
            key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in the correct dtype just to be sure everything works as expected.
        # This might slowdown training & inference so it is recommended to not cast the LayerNorms
        # in fp32. (LlamaRMSNorm handles it correctly)

        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        attn_output = self._flash_attention_forward(
            query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout
        )

        attn_output = attn_output.reshape(bsz, q_len, -1)
        attn_output = self.out_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
    def _flash_attention_forward(
        self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
    ):
        """
        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
        first unpad the input, then computes the attention scores and pad the final attention scores.

        Args:
            query_states (`torch.Tensor`):
                Input query states to be passed to Flash Attention API
            key_states (`torch.Tensor`):
                Input key states to be passed to Flash Attention API
            value_states (`torch.Tensor`):
                Input value states to be passed to Flash Attention API
            attention_mask (`torch.Tensor`):
                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
                position of padding tokens and 1 for the position of non-padding tokens.
            dropout (`float`):
                Attention dropout
            softmax_scale (`float`, *optional*):
                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
        """
        if not self._flash_attn_uses_top_left_mask:
            causal = self.is_causal
        else:
            # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
            causal = self.is_causal and query_length != 1

        # Contains at least one padding token in the sequence
        if attention_mask is not None:
            batch_size = query_states.shape[0]
            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                query_states, key_states, value_states, attention_mask, query_length
            )

            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

            attn_output_unpad = flash_attn_varlen_func(
                query_states,
                key_states,
                value_states,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=max_seqlen_in_batch_q,
                max_seqlen_k=max_seqlen_in_batch_k,
                dropout_p=dropout,
                softmax_scale=softmax_scale,
                causal=causal,
            )

            attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
        else:
            attn_output = flash_attn_func(
                query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
            )

        return attn_output

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape

        key_layer = index_first_axis(
            key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )
        value_layer = index_first_axis(
            value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )
        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
            )
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )


class Florence2SdpaAttention(Florence2Attention):
    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""
        if output_attentions or layer_head_mask is not None:
            # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
            logger.warning_once(
                "Florence2Model is using Florence2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
                ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states,
                key_value_states=key_value_states,
                past_key_value=past_key_value,
                attention_mask=attention_mask,
                layer_head_mask=layer_head_mask,
                output_attentions=output_attentions,
            )

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None

        bsz, tgt_len, _ = hidden_states.size()

        # get query proj
        query_states = self.q_proj(hidden_states)
        # get key, value proj
        # `past_key_value[0].shape[2] == key_value_states.shape[1]`
        # is checking that the `sequence_length` of the `past_key_value` is the same as
        # the provided `key_value_states` to support prefix tuning
        if (
            is_cross_attention
            and past_key_value is not None
            and past_key_value[0].shape[2] == key_value_states.shape[1]
        ):
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        elif is_cross_attention:
            # cross_attentions
            key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
            value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
        elif past_key_value is not None:
            # reuse k, v, self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)
        else:
            # self_attention
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        query_states = self._shape(query_states, tgt_len, bsz)

        # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
        # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
        # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
        is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False

        # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
        # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=attention_mask,
            dropout_p=self.dropout if self.training else 0.0,
            is_causal=is_causal,
        )

        if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2)

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned across GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, None, past_key_value


FLORENCE2_ATTENTION_CLASSES = {
    "eager": Florence2Attention,
    "sdpa": Florence2SdpaAttention,
    "flash_attention_2": Florence2FlashAttention2,
}


class Florence2EncoderLayer(nn.Module):
    def __init__(self, config: Florence2LanguageConfig):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation](
            embed_dim=self.embed_dim,
            num_heads=config.encoder_attention_heads,
            dropout=config.attention_dropout,
            config=config,
        )
        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout
        self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
        self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: torch.FloatTensor,
        layer_head_mask: torch.FloatTensor,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
                `(encoder_attention_heads,)`.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states
        hidden_states, attn_weights, _ = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        residual = hidden_states
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.final_layer_norm(hidden_states)

        if hidden_states.dtype == torch.float16 and (
            torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
        ):
            clamp_value = torch.finfo(hidden_states.dtype).max - 1000
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class Florence2DecoderLayer(nn.Module):
    def __init__(self, config: Florence2LanguageConfig):
        super().__init__()
        self.embed_dim = config.d_model

        self.self_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation](
            embed_dim=self.embed_dim,
            num_heads=config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
            is_causal=True,
            config=config,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.encoder_attn = FLORENCE2_ATTENTION_CLASSES[config._attn_implementation](
            self.embed_dim,
            config.decoder_attention_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
            config=config,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
        self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = True,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            encoder_hidden_states (`torch.FloatTensor`):
                cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
            encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
                `(encoder_attention_heads,)`.
            cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
                size `(decoder_attention_heads,)`.
            past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states

        # Self Attention
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
        # add present self-attn cache to positions 1,2 of present_key_value tuple
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=self_attn_past_key_value,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        # Cross-Attention Block
        cross_attn_present_key_value = None
        cross_attn_weights = None
        if encoder_hidden_states is not None:
            residual = hidden_states

            # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
                hidden_states=hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=cross_attn_past_key_value,
                output_attentions=output_attentions,
            )
            hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
            hidden_states = residual + hidden_states
            hidden_states = self.encoder_attn_layer_norm(hidden_states)

            # add cross-attn to positions 3,4 of present_key_value tuple
            present_key_value = present_key_value + cross_attn_present_key_value

        # Fully Connected
        residual = hidden_states
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states
        hidden_states = self.final_layer_norm(hidden_states)

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        if use_cache:
            outputs += (present_key_value,)

        return outputs



class Florence2LanguagePreTrainedModel(PreTrainedModel):
    config_class = Florence2LanguageConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _keys_to_ignore_on_load_unexpected = ["encoder.version", "decoder.version"]
    _no_split_modules = [r"Florence2EncoderLayer", r"Florence2DecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True

    def _init_weights(self, module):
        std = self.config.init_std
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    @property
    def dummy_inputs(self):
        pad_token = self.config.pad_token_id
        input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
        dummy_inputs = {
            "attention_mask": input_ids.ne(pad_token),
            "input_ids": input_ids,
        }
        return dummy_inputs


class Florence2Encoder(Florence2LanguagePreTrainedModel):
    """
    Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
    [`Florence2EncoderLayer`].

    Args:
        config: Florence2LanguageConfig
        embed_tokens (nn.Embedding): output embedding
    """

    def __init__(self, config: Florence2LanguageConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)

        self.dropout = config.dropout
        self.layerdrop = config.encoder_layerdrop

        embed_dim = config.d_model
        self.padding_idx = config.pad_token_id
        self.max_source_positions = config.max_position_embeddings
        embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0

        self.embed_tokens = Florence2ScaledWordEmbedding(
            config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
        )

        if embed_tokens is not None:
            self.embed_tokens.weight = embed_tokens.weight

        self.embed_positions = Florence2LearnedPositionalEmbedding(
            config.max_position_embeddings,
            embed_dim,
        )
        self.layers = nn.ModuleList([Florence2EncoderLayer(config) for _ in range(config.encoder_layers)])
        self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
        self._use_sdpa = config._attn_implementation == "sdpa"
        self.layernorm_embedding = nn.LayerNorm(embed_dim)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input = input_ids
            input_ids = input_ids.view(-1, input_ids.shape[-1])
        elif inputs_embeds is not None:
            input = inputs_embeds[:, :, -1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        embed_pos = self.embed_positions(input)
        embed_pos = embed_pos.to(inputs_embeds.device)

        hidden_states = inputs_embeds + embed_pos
        hidden_states = self.layernorm_embedding(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        # expand attention_mask
        if attention_mask is not None:
            if self._use_flash_attention_2:
                attention_mask = attention_mask if 0 in attention_mask else None
            elif self._use_sdpa and head_mask is None and not output_attentions:
                # output_attentions=True & head_mask can not be supported when using SDPA, fall back to
                # the manual implementation that requires a 4D causal mask in all cases.
                # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
                attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype)
            else:
                # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
                attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        # check if head_mask has a correct number of layers specified if desired
        if head_mask is not None:
            if head_mask.size()[0] != (len(self.layers)):
                raise ValueError(
                    f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
                    f" {head_mask.size()[0]}."
                )

        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            to_drop = False
            if self.training:
                dropout_probability = torch.rand([])
                if dropout_probability < self.layerdrop:  # skip the layer
                    to_drop = True

            if to_drop:
                layer_outputs = (None, None)
            else:
                if self.gradient_checkpointing and self.training:
                    layer_outputs = self._gradient_checkpointing_func(
                        encoder_layer.__call__,
                        hidden_states,
                        attention_mask,
                        (head_mask[idx] if head_mask is not None else None),
                        output_attentions,
                    )
                else:
                    layer_outputs = encoder_layer(
                        hidden_states,
                        attention_mask,
                        layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                        output_attentions=output_attentions,
                    )

                hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


class Florence2Decoder(Florence2LanguagePreTrainedModel):
    """
    Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`Florence2DecoderLayer`]

    Args:
        config: Florence2LanguageConfig
        embed_tokens (nn.Embedding): output embedding
    """

    def __init__(self, config: Florence2LanguageConfig, embed_tokens: Optional[nn.Embedding] = None):
        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.decoder_layerdrop
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0

        self.embed_tokens = Florence2ScaledWordEmbedding(
            config.vocab_size, config.d_model, self.padding_idx, embed_scale=embed_scale
        )

        if embed_tokens is not None:
            self.embed_tokens.weight = embed_tokens.weight

        self.embed_positions = Florence2LearnedPositionalEmbedding(
            config.max_position_embeddings,
            config.d_model,
        )
        self.layers = nn.ModuleList([Florence2DecoderLayer(config) for _ in range(config.decoder_layers)])
        self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
        self._use_sdpa = config._attn_implementation == "sdpa"

        self.layernorm_embedding = nn.LayerNorm(config.d_model)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
                of the decoder.
            encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
                Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
                selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
                Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
                cross-attention on hidden heads. Mask values selected in `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
                Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
                shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
                shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            input = input_ids
            input_shape = input.shape
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            input = inputs_embeds[:, :, -1]
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        # past_key_values_length
        past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input)

        if self._use_flash_attention_2:
            # 2d mask is passed through the layers
            attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
        elif self._use_sdpa and not output_attentions and cross_attn_head_mask is None:
            # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
            # the manual implementation that requires a 4D causal mask in all cases.
            attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
                attention_mask,
                input_shape,
                inputs_embeds,
                past_key_values_length,
            )
        else:
            # 4d mask is passed through the layers
            attention_mask = _prepare_4d_causal_attention_mask(
                attention_mask, input_shape, inputs_embeds, past_key_values_length
            )

        # expand encoder attention mask
        if encoder_hidden_states is not None and encoder_attention_mask is not None:
            if self._use_flash_attention_2:
                encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
            elif self._use_sdpa and cross_attn_head_mask is None and not output_attentions:
                # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
                # the manual implementation that requires a 4D causal mask in all cases.
                # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
                encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
                    encoder_attention_mask,
                    inputs_embeds.dtype,
                    tgt_len=input_shape[-1],
                )
            else:
                # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
                encoder_attention_mask = _prepare_4d_attention_mask(
                    encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
                )

        # embed positions
        positions = self.embed_positions(input, past_key_values_length)
        positions = positions.to(inputs_embeds.device)

        hidden_states = inputs_embeds + positions
        hidden_states = self.layernorm_embedding(hidden_states)

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
        next_decoder_cache = () if use_cache else None

        # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
        for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
            if attn_mask is not None:
                if attn_mask.size()[0] != (len(self.layers)):
                    raise ValueError(
                        f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
                        f" {head_mask.size()[0]}."
                    )

        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            if self.training:
                dropout_probability = torch.rand([])
                if dropout_probability < self.layerdrop:
                    continue

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    head_mask[idx] if head_mask is not None else None,
                    cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
                    None,
                    output_attentions,
                    use_cache,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                    cross_attn_layer_head_mask=(
                        cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
                    ),
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )
            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )


class Florence2LanguageModel(Florence2LanguagePreTrainedModel):
    _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]

    def __init__(self, config: Florence2LanguageConfig):
        super().__init__(config)

        padding_idx, vocab_size = config.pad_token_id, config.vocab_size
        self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)

        self.encoder = Florence2Encoder(config, self.shared)
        self.decoder = Florence2Decoder(config, self.shared)

        # Initialize weights and apply final processing
        self.post_init()

    def _tie_weights(self):
        if self.config.tie_word_embeddings:
            self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
            self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)

    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, value):
        self.shared = value
        self.encoder.embed_tokens = self.shared
        self.decoder.embed_tokens = self.shared

    def get_encoder(self):
        return self.encoder

    def get_decoder(self):
        return self.decoder

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[List[torch.FloatTensor]] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, Seq2SeqModelOutput]:
        # different to other models, Florence2 automatically creates decoder_input_ids from
        # input_ids if no decoder_input_ids are provided
        if decoder_input_ids is None and decoder_inputs_embeds is None:
            if input_ids is None:
                raise ValueError(
                    "If no `decoder_input_ids` or `decoder_inputs_embeds` are "
                    "passed, `input_ids` cannot be `None`. Please pass either "
                    "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
                )

            decoder_input_ids = shift_tokens_right(
                input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
            )

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                head_mask=head_mask,
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_outputs[0],
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )


class Florence2LanguageForConditionalGeneration(Florence2LanguagePreTrainedModel):
    base_model_prefix = "model"
    _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
    _keys_to_ignore_on_load_missing = ["final_logits_bias"]

    def __init__(self, config: Florence2LanguageConfig):
        super().__init__(config)
        self.model = Florence2LanguageModel(config)
        self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
        self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_encoder(self):
        return self.model.get_encoder()

    def get_decoder(self):
        return self.model.get_decoder()

    def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
        new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        self._resize_final_logits_bias(new_embeddings.weight.shape[0])
        return new_embeddings

    def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
        old_num_tokens = self.final_logits_bias.shape[-1]
        if new_num_tokens <= old_num_tokens:
            new_bias = self.final_logits_bias[:, :new_num_tokens]
        else:
            extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
            new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
        self.register_buffer("final_logits_bias", new_bias)

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[List[torch.FloatTensor]] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, Seq2SeqLMOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if labels is not None:
            if use_cache:
                logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
            use_cache = False
            if decoder_input_ids is None and decoder_inputs_embeds is None:
                decoder_input_ids = shift_tokens_right(
                    labels, self.config.pad_token_id, self.config.decoder_start_token_id
                )

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        lm_logits = self.lm_head(outputs[0])
        lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device)

        masked_lm_loss = None
        if labels is not None:
            labels = labels.to(lm_logits.device)
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return Seq2SeqLMOutput(
            loss=masked_lm_loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )

    def prepare_inputs_for_generation(
        self,
        decoder_input_ids,
        past_key_values=None,
        attention_mask=None,
        decoder_attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        use_cache=None,
        encoder_outputs=None,
        **kwargs,
    ):
        # cut decoder_input_ids if past_key_values is used
        if past_key_values is not None:
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if decoder_input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = decoder_input_ids.shape[1] - 1

            decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]

        return {
            "input_ids": None,  # encoder_outputs is defined. input_ids not needed
            "encoder_outputs": encoder_outputs,
            "past_key_values": past_key_values,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
            "decoder_attention_mask": decoder_attention_mask,
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
            "use_cache": use_cache,  # change this to avoid caching (presumably for debugging)
        }

    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            # cached cross_attention states don't have to be reordered -> they are always the same
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
                + layer_past[2:],
            )
        return reordered_past

@dataclass
class Florence2Seq2SeqLMOutput(ModelOutput):
    """
    Base class for Florence-2 model's outputs that also contains : pre-computed hidden states that can speed up sequential
    decoding.

    Args:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the decoder of the model.

            If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
            hidden_size)` is output.
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
        decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
        decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
        encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
            Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size,
            num_image_tokens, hidden_size)`.

            image_hidden_states of the model produced by the vision encoder
    """

    last_hidden_state: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    encoder_last_hidden_state: Optional[torch.FloatTensor] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None


FLORENCE2_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`Florence2Config`] or [`Florence2VisionConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


@add_start_docstrings(
    "The bare Florence-2 Model outputting raw hidden-states without any specific head on top.",
    FLORENCE2_START_DOCSTRING,
)
class Florence2PreTrainedModel(PreTrainedModel):
    config_class = Florence2Config
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _skip_keys_device_placement = "past_key_values"

    @property
    def _supports_flash_attn_2(self):
        """
        Retrieve language_model's attribute to check whether the model supports
        Flash Attention 2 or not.
        """
        return self.language_model._supports_flash_attn_2

    @property
    def _supports_sdpa(self):
        """
        Retrieve language_model's attribute to check whether the model supports
        SDPA or not.
        """
        return self.language_model._supports_sdpa


FLORENCE2_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
            The tensors corresponding to the input images. Pixel values can be obtained using
            [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`Florence2Processor`] uses
            [`CLIPImageProcessor`] for processing images).
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

@add_start_docstrings(
    """The FLORENCE2 vision model without any head""",
    FLORENCE2_START_DOCSTRING,
)
class Florence2VisionModel(Florence2PreTrainedModel):
    def __init__(self, config: Florence2VisionConfig):
        super().__init__(config)
        assert config.model_type == 'davit', 'only DaViT is supported for now'
        self.vision_tower = DaViT.from_config(config=config)

        self.post_init()
    
    def forward(self, pixel_values):
        if len(pixel_values.shape) == 4:
            x = self.vision_tower.forward_features_unpool(pixel_values)
        else:
            raise ValueError(f'invalid image shape {pixel_values.shape}')
        return x


@add_start_docstrings(
    """The FLORENCE2 vision model with projection layer""",
    FLORENCE2_START_DOCSTRING,
)
class Florence2VisionModelWithProjection(Florence2PreTrainedModel):
    def __init__(self, config: Florence2VisionConfig):
        super().__init__(config)
        assert config.model_type == 'davit', 'only DaViT is supported for now'
        self.vision_tower = DaViT.from_config(config=config)

        self._build_image_projection_layers(config)

        self.post_init()
    
    def _build_image_projection_layers(self, config):
        image_dim_out = config.dim_embed[-1]
        dim_projection = config.projection_dim
        self.image_projection = nn.Parameter(
            torch.empty(image_dim_out, dim_projection)
        )
        self.image_proj_norm = nn.LayerNorm(dim_projection)
        image_pos_embed_config = config.image_pos_embed
        if image_pos_embed_config['type'] == 'learned_abs_2d':
            self.image_pos_embed = LearnedAbsolutePositionEmbedding2D(
                embedding_dim=image_dim_out,
                num_pos=image_pos_embed_config['max_pos_embeddings']
            )
        else:
            raise NotImplementedError('Not implemented yet')

        self.image_feature_source = config.image_feature_source

        # temporal embedding
        visual_temporal_embedding_config = config.visual_temporal_embedding
        if visual_temporal_embedding_config['type'] == 'COSINE':
            self.visual_temporal_embed = PositionalEmbeddingCosine1D(
                embed_dim=image_dim_out,
                max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings']
            )
        else:
            raise NotImplementedError('Not implemented yet')

    def forward(self, pixel_values):
        if len(pixel_values.shape) == 4:
            batch_size, C, H, W = pixel_values.shape
            T = 1
            x = self.vision_tower.forward_features_unpool(pixel_values)
        else:
            raise ValueError(f'invalid image shape {pixel_values.shape}')
        
        if self.image_pos_embed is not None:
            x = x.view(batch_size * T, -1, x.shape[-1])
            num_tokens = x.shape[-2]
            h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5)
            assert h * w == num_tokens, 'only support square feature maps for now'
            x = x.view(batch_size * T, h, w, x.shape[-1])
            pos_embed = self.image_pos_embed(x)
            x = x + pos_embed
            x = x.view(batch_size, T * h*w, x.shape[-1])

        if self.visual_temporal_embed is not None:
            visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0])
            x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1])

        x_feat_dict = {}

        spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2)
        x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x

        temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1)
        x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x

        x = x.view(batch_size, T, -1, x.shape[-1])[:, -1]
        x_feat_dict['last_frame'] = x

        new_x = []
        for _image_feature_source in self.image_feature_source:
            if _image_feature_source not in x_feat_dict:
                raise ValueError('invalid image feature source: {}'.format(_image_feature_source))
            new_x.append(x_feat_dict[_image_feature_source])

        x = torch.cat(new_x, dim=1)

        x = x @ self.image_projection
        x = self.image_proj_norm(x)


        return x



@add_start_docstrings(
    """The FLORENCE2 model which consists of a vision backbone and a language model.""",
    FLORENCE2_START_DOCSTRING,
)
class Florence2ForConditionalGeneration(Florence2PreTrainedModel):
    def __init__(self, config: Florence2Config):
        super().__init__(config)
        assert config.vision_config.model_type == 'davit', 'only DaViT is supported for now'
        del config.vision_config.model_type
        self.vision_tower = DaViT.from_config(config=config.vision_config)
        # remove unused layers 
        del self.vision_tower.head
        del self.vision_tower.norms

        self.vocab_size = config.vocab_size
        self._attn_implementation = config._attn_implementation
        self._build_image_projection_layers(config)

        language_model = Florence2LanguageForConditionalGeneration(config=config.text_config)

        if language_model._tied_weights_keys is not None:
            self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
        self.language_model = language_model

        self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
        self.post_init()
    
    def _build_image_projection_layers(self, config):
        image_dim_out = config.vision_config.dim_embed[-1]
        dim_projection = config.vision_config.projection_dim
        self.image_projection = nn.Parameter(
            torch.empty(image_dim_out, dim_projection)
        )
        self.image_proj_norm = nn.LayerNorm(dim_projection)
        image_pos_embed_config = config.vision_config.image_pos_embed
        if image_pos_embed_config['type'] == 'learned_abs_2d':
            self.image_pos_embed = LearnedAbsolutePositionEmbedding2D(
                embedding_dim=image_dim_out,
                num_pos=image_pos_embed_config['max_pos_embeddings']
            )
        else:
            raise NotImplementedError('Not implemented yet')

        self.image_feature_source = config.vision_config.image_feature_source

        # temporal embedding
        visual_temporal_embedding_config = config.vision_config.visual_temporal_embedding
        if visual_temporal_embedding_config['type'] == 'COSINE':
            self.visual_temporal_embed = PositionalEmbeddingCosine1D(
                embed_dim=image_dim_out,
                max_seq_len=visual_temporal_embedding_config['max_temporal_embeddings']
            )
        else:
            raise NotImplementedError('Not implemented yet')

    def get_encoder(self):
        return self.language_model.get_encoder()

    def get_decoder(self):
        return self.language_model.get_decoder()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
        model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        # update vocab size
        self.config.text_config.vocab_size = model_embeds.num_embeddings
        self.config.vocab_size = model_embeds.num_embeddings
        self.vocab_size = model_embeds.num_embeddings
        return model_embeds
    
    def _encode_image(self, pixel_values):
        if len(pixel_values.shape) == 4:
            batch_size, C, H, W = pixel_values.shape
            T = 1
            x = self.vision_tower.forward_features_unpool(pixel_values)
        else:
            raise ValueError(f'invalid image shape {pixel_values.shape}')
        
        if self.image_pos_embed is not None:
            x = x.view(batch_size * T, -1, x.shape[-1])
            num_tokens = x.shape[-2]
            h, w = int(num_tokens ** 0.5), int(num_tokens ** 0.5)
            assert h * w == num_tokens, 'only support square feature maps for now'
            x = x.view(batch_size * T, h, w, x.shape[-1])
            pos_embed = self.image_pos_embed(x)
            x = x + pos_embed
            x = x.view(batch_size, T * h*w, x.shape[-1])

        if self.visual_temporal_embed is not None:
            visual_temporal_embed = self.visual_temporal_embed(x.view(batch_size, T, -1, x.shape[-1])[:, :, 0])
            x = x.view(batch_size, T, -1, x.shape[-1]) + visual_temporal_embed.view(1, T, 1, x.shape[-1])

        x_feat_dict = {}

        spatial_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=2)
        x_feat_dict['spatial_avg_pool'] = spatial_avg_pool_x

        temporal_avg_pool_x = x.view(batch_size, T, -1, x.shape[-1]).mean(dim=1)
        x_feat_dict['temporal_avg_pool'] = temporal_avg_pool_x

        x = x.view(batch_size, T, -1, x.shape[-1])[:, -1]
        x_feat_dict['last_frame'] = x

        new_x = []
        for _image_feature_source in self.image_feature_source:
            if _image_feature_source not in x_feat_dict:
                raise ValueError('invalid image feature source: {}'.format(_image_feature_source))
            new_x.append(x_feat_dict[_image_feature_source])

        x = torch.cat(new_x, dim=1)

        x = x @ self.image_projection
        x = self.image_proj_norm(x)

        return x 

    def _merge_input_ids_with_image_features(
        self, image_features, inputs_embeds 
    ):
        batch_size, image_token_length = image_features.size()[:-1]
        device = image_features.device
        image_attention_mask = torch.ones(batch_size, image_token_length, device=device)

        # task_prefix_embeds: [batch_size, padded_context_length, hidden_size]
        # task_prefix_attention_mask: [batch_size, context_length]
        if inputs_embeds is None:
            return image_features, image_attention_mask

        task_prefix_embeds = inputs_embeds
        task_prefix_attention_mask = torch.ones(batch_size, task_prefix_embeds.size(1), device=device)

        if len(task_prefix_attention_mask.shape) == 3:
            task_prefix_attention_mask = task_prefix_attention_mask[:, 0]

        # concat [image embeds, task prefix embeds]
        inputs_embeds = torch.cat([image_features, task_prefix_embeds], dim=1)
        attention_mask = torch.cat([image_attention_mask, task_prefix_attention_mask], dim=1)

        return inputs_embeds, attention_mask


    @add_start_docstrings_to_model_forward(FLORENCE2_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Florence2Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        decoder_head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[List[torch.FloatTensor]] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, Florence2Seq2SeqLMOutput]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, Florence2ForConditionalGeneration

        >>> model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-large")
        >>> processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large")

        >>> prompt = "<CAPTION>"
        >>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(text=prompt, images=image, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(**inputs, max_length=100)
        >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "A green car parked in front of a yellow building."
        ```"""
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        image_features = None
        if inputs_embeds is None:
            # 1. Extra the input embeddings
            if input_ids is not None:
                inputs_embeds = self.get_input_embeddings()(input_ids)
            # 2. Merge text and images
            if pixel_values is not None:
                # (batch_size, num_image_tokens, hidden_size)
                image_features = self._encode_image(pixel_values)
                inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds)

        attention_mask = attention_mask.to(inputs_embeds.dtype)
        outputs = self.language_model(
            attention_mask=attention_mask,
            labels=labels,
            inputs_embeds=inputs_embeds,
            decoder_input_ids=decoder_input_ids,
            encoder_outputs=encoder_outputs,
            decoder_attention_mask=decoder_attention_mask,
            head_mask=head_mask,
            decoder_head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            decoder_inputs_embeds=decoder_inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = outputs.logits
        logits = logits.float()
        loss = outputs.loss
        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return Florence2Seq2SeqLMOutput(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
            image_hidden_states=image_features
        )

    def generate(
        self,
        input_ids, 
        inputs_embeds=None,
        pixel_values=None,
        **kwargs
        ):

        if inputs_embeds is None:
            # 1. Extra the input embeddings
            if input_ids is not None:
                inputs_embeds = self.get_input_embeddings()(input_ids)
            # 2. Merge text and images
            if pixel_values is not None:
                image_features = self._encode_image(pixel_values)
                inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(image_features, inputs_embeds)
        
        return self.language_model.generate(
            input_ids=None,
            inputs_embeds=inputs_embeds,
            **kwargs
        )

    def prepare_inputs_for_generation(
        self,
        decoder_input_ids,
        past_key_values=None,
        attention_mask=None,
        pixel_values=None,
        decoder_attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
        use_cache=None,
        encoder_outputs=None,
        **kwargs,
    ):
        # cut decoder_input_ids if past_key_values is used
        if past_key_values is not None:
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if decoder_input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = decoder_input_ids.shape[1] - 1

            decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
        
        return {
            "input_ids": None,  # encoder_outputs is defined. input_ids not needed
            "encoder_outputs": encoder_outputs,
            "past_key_values": past_key_values,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
            "pixel_values": pixel_values,
            "decoder_attention_mask": decoder_attention_mask,
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
            "use_cache": use_cache,  # change this to avoid caching (presumably for debugging)
        }
    
    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return self.language_model.shift_tokens_right(labels)

    def _reorder_cache(self, *args, **kwargs):
        return self.language_model._reorder_cache(*args, **kwargs)