File size: 11,409 Bytes
249c1c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Image processor class for Phi3-V."""

from typing import List, Optional, Union

import numpy as np

from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_transforms import (
    convert_to_rgb,
)
from transformers.image_utils import (
    OPENAI_CLIP_MEAN,
    OPENAI_CLIP_STD,
    ImageInput,
    make_list_of_images,
    valid_images,
)
from transformers.utils import TensorType, is_vision_available, logging

from transformers import AutoImageProcessor

logger = logging.get_logger(__name__)


if is_vision_available():
    from PIL import Image

import torch
import torchvision

def padding_336(b):
    width, height = b.size
    tar = int(np.ceil(height / 336) * 336)
    top_padding = int((tar - height)/2)
    bottom_padding = tar - height - top_padding
    left_padding = 0
    right_padding = 0
    b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])

    return b

def calc_padded_size(width, height, padding_unit=336):  
    target_height = int(np.ceil(height / padding_unit) * padding_unit)  
    top_padding = int((target_height - height) / 2)  
    bottom_padding = target_height - height - top_padding  
    left_padding = 0  
    right_padding = 0  
    padded_width = width + left_padding + right_padding  
    padded_height = height + top_padding + bottom_padding  
    return padded_width, padded_height  

def HD_transform(img, hd_num=16):
    width, height = img.size
    trans = False
    if width < height:
        img = img.transpose(Image.TRANSPOSE)
        trans = True
        width, height = img.size
    ratio = (width/ height)
    scale = 1
    while scale*np.ceil(scale/ratio) <= hd_num:
        scale += 1
    scale -= 1
    new_w = int(scale * 336)
    new_h = int(new_w / ratio)

    img = torchvision.transforms.functional.resize(img, [new_h, new_w],)
    img = padding_336(img)
    width, height = img.size
    if trans:
        img = img.transpose(Image.TRANSPOSE)

    return img

def calc_hd_transform_size(width, height, hd_num=16):  
    transposed = False  
    if width < height:  
        width, height = height, width  
        transposed = True  
  
    ratio = width / height  
    scale = 1  
    while scale * np.ceil(scale / ratio) <= hd_num:  
        scale += 1  
    scale -= 1  
  
    new_width = int(scale * 336)  
    new_height = int(new_width / ratio)  
  
    padded_width, padded_height = calc_padded_size(new_width, new_height)  
      
    if transposed:  
        padded_width, padded_height = padded_height, padded_width  
  
    return padded_width, padded_height  

def pad_to_max_num_crops_tensor(images, max_crops=5):
    """
    images: B x 3 x H x W, B<=max_crops
    """
    B, _, H, W = images.shape
    if B < max_crops:
        pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
        images = torch.cat([images, pad], dim=0)
    return images


class Phi3VImageProcessor(BaseImageProcessor):
    r"""
    Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
    for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512)

    Args:
        image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
            Mean to use if normalizing the image. This is a float or list of floats the length of the number of
            channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
        image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
            Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
            number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
            Can be overridden by the `image_std` parameter in the `preprocess` method.
        do_convert_rgb (`bool`, *optional*, defaults to `True`):
            Whether to convert the image to RGB.
    """

    model_input_names = ["pixel_values"]

    def __init__(
        self,
        num_crops: int = 1,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_convert_rgb: bool = True,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.num_crops = num_crops
        self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
        self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
        self.do_convert_rgb = do_convert_rgb
    
    def calc_num_image_tokens(
            self, 
            images: ImageInput 
    ):
        """ Calculate the number of image tokens for each image.
        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
        """
        images = make_list_of_images(images)

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )

        images = [image.convert('RGB') for image in images]
        # (H, W, C)
        elems = [HD_transform(im, hd_num = self.num_crops) for im in images] 
        shapes = [[im.size[1], im.size[0]] for im in elems]
        num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
        return num_img_tokens

    def calc_num_image_tokens_from_image_size(self, width, height):
        """
        Calculate the number of image tokens for a given image size.
        Args:
            width (`int`): Width of the image.
            height (`int`): Height of the image.
        """
        new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)  
        num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)  
        return num_img_tokens

    def preprocess(
        self,
        images: ImageInput,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_convert_rgb: bool = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
    ):
        """
        Args:
            images (`ImageInput`):
                Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
                passing in images with pixel values between 0 and 1, set `do_rescale=False`.
            image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
                Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
            image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
                Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
                `True`.
            do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
                Whether to convert the image to RGB.
            return_tensors (`str` or `TensorType`, *optional*):
                The type of tensors to return. Can be one of:
                - Unset: Return a list of `np.ndarray`.
                - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
                - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
                - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
                - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
        """
        image_mean = image_mean if image_mean is not None else self.image_mean
        image_std = image_std if image_std is not None else self.image_std
        do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb

        images = make_list_of_images(images)

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )

        if do_convert_rgb:
            images = [convert_to_rgb(image) for image in images]

        image_sizes = []
        img_processor = torchvision.transforms.Compose([
            torchvision.transforms.ToTensor(),
            torchvision.transforms.Normalize(image_mean, image_std)
        ])

        # PIL images
        # HD_transform pad images to size of multiiply of 336, 336
        # convert to RGB first
        images = [image.convert('RGB') for image in images]
        elems = [HD_transform(im, hd_num = self.num_crops) for im in images] 
        # tensor transform and normalize
        hd_images = [img_processor(im) for im in elems]
        # create global image 
        global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images]

        # [(3, h, w)], where h, w is multiple of 336
        shapes = [[im.size(1), im.size(2)] for im in hd_images]
        num_img_tokens = [int(((h//336)*(w//336)+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
        # reshape to channel dimension -> (num_images, num_crops, 3, 336, 336)
        # (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336)
        hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)]
        # concat global image and local image
        hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]

        # pad to max_num_crops
        image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape]
        image_transformed = torch.stack(image_transformed, dim=0)
        image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
        padded_images = image_transformed
        image_sizes = shapes

        data = {"pixel_values": padded_images, 
                "image_sizes": image_sizes,
                "num_img_tokens": num_img_tokens
                }

        return BatchFeature(data=data, tensor_type=return_tensors)

AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)