|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Processor class for Phi3-V. |
|
""" |
|
import re |
|
from typing import List, Optional, Union |
|
|
|
import torch |
|
|
|
import transformers |
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.image_utils import ImageInput |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy |
|
from transformers.utils import TensorType |
|
|
|
|
|
"""Image processor class for Phi3-V.""" |
|
|
|
from typing import List, Optional, Union |
|
|
|
import numpy as np |
|
|
|
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature |
|
from transformers.image_transforms import ( |
|
convert_to_rgb, |
|
) |
|
from transformers.image_utils import ( |
|
OPENAI_CLIP_MEAN, |
|
OPENAI_CLIP_STD, |
|
ImageInput, |
|
make_list_of_images, |
|
valid_images, |
|
) |
|
from transformers.utils import TensorType, is_vision_available, logging |
|
|
|
from transformers import AutoImageProcessor |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
import torch |
|
import torchvision |
|
|
|
def padding_336(b): |
|
width, height = b.size |
|
tar = int(np.ceil(height / 336) * 336) |
|
top_padding = int((tar - height)/2) |
|
bottom_padding = tar - height - top_padding |
|
left_padding = 0 |
|
right_padding = 0 |
|
b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255]) |
|
|
|
return b |
|
|
|
def calc_padded_size(width, height, padding_unit=336): |
|
target_height = int(np.ceil(height / padding_unit) * padding_unit) |
|
top_padding = int((target_height - height) / 2) |
|
bottom_padding = target_height - height - top_padding |
|
left_padding = 0 |
|
right_padding = 0 |
|
padded_width = width + left_padding + right_padding |
|
padded_height = height + top_padding + bottom_padding |
|
return padded_width, padded_height |
|
|
|
def HD_transform(img, hd_num=16): |
|
width, height = img.size |
|
trans = False |
|
if width < height: |
|
img = img.transpose(Image.TRANSPOSE) |
|
trans = True |
|
width, height = img.size |
|
ratio = (width/ height) |
|
scale = 1 |
|
while scale*np.ceil(scale/ratio) <= hd_num: |
|
scale += 1 |
|
scale -= 1 |
|
new_w = int(scale * 336) |
|
new_h = int(new_w / ratio) |
|
|
|
img = torchvision.transforms.functional.resize(img, [new_h, new_w],) |
|
img = padding_336(img) |
|
width, height = img.size |
|
if trans: |
|
img = img.transpose(Image.TRANSPOSE) |
|
|
|
return img |
|
|
|
def calc_hd_transform_size(width, height, hd_num=16): |
|
transposed = False |
|
if width < height: |
|
width, height = height, width |
|
transposed = True |
|
|
|
ratio = width / height |
|
scale = 1 |
|
while scale * np.ceil(scale / ratio) <= hd_num: |
|
scale += 1 |
|
scale -= 1 |
|
|
|
new_width = int(scale * 336) |
|
new_height = int(new_width / ratio) |
|
|
|
padded_width, padded_height = calc_padded_size(new_width, new_height) |
|
|
|
if transposed: |
|
padded_width, padded_height = padded_height, padded_width |
|
|
|
return padded_width, padded_height |
|
|
|
def pad_to_max_num_crops_tensor(images, max_crops=5): |
|
""" |
|
images: B x 3 x H x W, B<=max_crops |
|
""" |
|
B, _, H, W = images.shape |
|
if B < max_crops: |
|
pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device) |
|
images = torch.cat([images, pad], dim=0) |
|
return images |
|
|
|
|
|
class Phi3VImageProcessor(BaseImageProcessor): |
|
r""" |
|
Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques |
|
for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512) |
|
|
|
Args: |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): |
|
Mean to use if normalizing the image. This is a float or list of floats the length of the number of |
|
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): |
|
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the |
|
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
Can be overridden by the `image_std` parameter in the `preprocess` method. |
|
do_convert_rgb (`bool`, *optional*, defaults to `True`): |
|
Whether to convert the image to RGB. |
|
""" |
|
|
|
model_input_names = ["pixel_values"] |
|
|
|
def __init__( |
|
self, |
|
num_crops: int = 1, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_convert_rgb: bool = True, |
|
**kwargs, |
|
) -> None: |
|
super().__init__(**kwargs) |
|
self.num_crops = num_crops |
|
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN |
|
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD |
|
self.do_convert_rgb = do_convert_rgb |
|
|
|
def calc_num_image_tokens( |
|
self, |
|
images: ImageInput |
|
): |
|
""" Calculate the number of image tokens for each image. |
|
Args: |
|
images (`ImageInput`): |
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If |
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
""" |
|
images = make_list_of_images(images) |
|
|
|
if not valid_images(images): |
|
raise ValueError( |
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " |
|
"torch.Tensor, tf.Tensor or jax.ndarray." |
|
) |
|
|
|
images = [image.convert('RGB') for image in images] |
|
|
|
elems = [HD_transform(im, hd_num = self.num_crops) for im in images] |
|
shapes = [[im.size[1], im.size[0]] for im in elems] |
|
num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes] |
|
return num_img_tokens |
|
|
|
def calc_num_image_tokens_from_image_size(self, width, height): |
|
""" |
|
Calculate the number of image tokens for a given image size. |
|
Args: |
|
width (`int`): Width of the image. |
|
height (`int`): Height of the image. |
|
""" |
|
new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops) |
|
num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12) |
|
return num_img_tokens |
|
|
|
def convert_PIL(self, image): |
|
""" |
|
Convert an image to a PIL Image object if it is not already one. |
|
|
|
Args: |
|
image (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`): The image to be converted. Can be a numpy array or a torch tensor or PIL object. |
|
|
|
Returns: |
|
A PIL Image object. |
|
""" |
|
if not isinstance(image, Image.Image): |
|
return torchvision.transforms.functional.to_pil_image(image) |
|
else: |
|
return image |
|
|
|
|
|
def preprocess( |
|
self, |
|
images: ImageInput, |
|
image_mean: Optional[Union[float, List[float]]] = None, |
|
image_std: Optional[Union[float, List[float]]] = None, |
|
do_convert_rgb: bool = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
): |
|
""" |
|
Args: |
|
images (`ImageInput`): |
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If |
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): |
|
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. |
|
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): |
|
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to |
|
`True`. |
|
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): |
|
Whether to convert the image to RGB. |
|
return_tensors (`str` or `TensorType`, *optional*): |
|
The type of tensors to return. Can be one of: |
|
- Unset: Return a list of `np.ndarray`. |
|
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. |
|
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. |
|
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. |
|
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. |
|
""" |
|
image_mean = image_mean if image_mean is not None else self.image_mean |
|
image_std = image_std if image_std is not None else self.image_std |
|
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb |
|
|
|
images = make_list_of_images(images) |
|
|
|
if not valid_images(images): |
|
raise ValueError( |
|
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " |
|
"torch.Tensor, tf.Tensor or jax.ndarray." |
|
) |
|
|
|
|
|
|
|
|
|
image_sizes = [] |
|
img_processor = torchvision.transforms.Compose([ |
|
torchvision.transforms.ToTensor(), |
|
torchvision.transforms.Normalize(image_mean, image_std) |
|
]) |
|
|
|
|
|
|
|
|
|
images = [convert_PIL(image) for image in images] |
|
|
|
images = [image.convert('RGB') for image in images] |
|
elems = [HD_transform(im, hd_num = self.num_crops) for im in images] |
|
|
|
hd_images = [img_processor(im) for im in elems] |
|
|
|
global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images] |
|
|
|
|
|
shapes = [[im.size(1), im.size(2)] for im in hd_images] |
|
num_img_tokens = [int(((h//336)*(w//336)+1)*144 + 1 + (h//336+1)*12) for h, w in shapes] |
|
|
|
|
|
hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)] |
|
|
|
hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)] |
|
|
|
|
|
image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape] |
|
image_transformed = torch.stack(image_transformed, dim=0) |
|
image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes] |
|
padded_images = image_transformed |
|
image_sizes = shapes |
|
|
|
data = {"pixel_values": padded_images, |
|
"image_sizes": image_sizes, |
|
"num_img_tokens": num_img_tokens |
|
} |
|
|
|
return BatchFeature(data=data, tensor_type=return_tensors) |
|
|
|
AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor) |
|
|
|
transformers.Phi3VImageProcessor = Phi3VImageProcessor |
|
|
|
class Phi3VProcessor(ProcessorMixin): |
|
r""" |
|
Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor. |
|
|
|
[`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the |
|
[`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information. |
|
|
|
Args: |
|
image_processor ([`Phi3VImageProcessor`], *optional*): |
|
The image processor is a required input. |
|
tokenizer ([`LlamaTokenizerFast`], *optional*): |
|
The tokenizer is a required input. |
|
""" |
|
|
|
attributes = ["image_processor", "tokenizer"] |
|
image_processor_class = "Phi3VImageProcessor" |
|
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") |
|
special_image_token = "<|image|>" |
|
|
|
def __init__(self, image_processor, tokenizer): |
|
self.image_processor = image_processor |
|
self.tokenizer = tokenizer |
|
self.num_img_tokens = image_processor.num_img_tokens |
|
self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)] |
|
|
|
def __call__( |
|
self, |
|
text: Union[TextInput, List[TextInput]], |
|
images: ImageInput = None, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length=None, |
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, |
|
) -> BatchFeature: |
|
""" |
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` |
|
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode |
|
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to |
|
Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring |
|
of the above two methods for more information. |
|
|
|
Args: |
|
text (`str`, `List[str]`, `List[List[str]]`): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
tensor. Both channels-first and channels-last formats are supported. |
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): |
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding |
|
index) among: |
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum |
|
acceptable input length for the model if that argument is not provided. |
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different |
|
lengths). |
|
max_length (`int`, *optional*): |
|
Maximum length of the returned list and optionally padding length (see above). |
|
truncation (`bool`, *optional*): |
|
Activates truncation to cut input sequences longer than `max_length` to `max_length`. |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
- `'jax'`: Return JAX `jnp.ndarray` objects. |
|
|
|
Returns: |
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields: |
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. |
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
`None`). |
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. |
|
""" |
|
if images is not None: |
|
image_inputs = self.image_processor(images, return_tensors=return_tensors) |
|
else: |
|
image_inputs = {} |
|
inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors) |
|
return inputs |
|
|
|
def calc_num_image_tokens(self, images: ImageInput): |
|
""" Calculate the number of image tokens for each image. |
|
Args: |
|
images (`ImageInput`): |
|
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If |
|
passing in images with pixel values between 0 and 1, set `do_rescale=False`. |
|
""" |
|
return self.image_processor.calc_num_image_tokens(images) |
|
|
|
def calc_num_image_tokens_from_image_size(self, width, height): |
|
""" Calculate the number of image token for an image with given width and height. |
|
Args: |
|
width (`int`): |
|
Width of the image. |
|
height (`int`): |
|
Height of the image. |
|
""" |
|
return self.image_processor.calc_num_image_tokens_from_image_size(width, height) |
|
|
|
|
|
@property |
|
def special_image_token_id(self): |
|
return self.tokenizer.convert_tokens_to_ids(self.special_image_token) |
|
|
|
def get_special_image_token_id(self): |
|
return self.tokenizer.convert_tokens_to_ids(self.special_image_token) |
|
|
|
def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, return_tensors=None): |
|
|
|
if not len(images): |
|
model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length) |
|
return BatchFeature(data={**model_inputs}) |
|
|
|
pattern = r"<\|image_\d+\|>" |
|
prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)] |
|
|
|
if 'num_img_tokens' in images: |
|
num_img_tokens = images['num_img_tokens'] |
|
else: |
|
assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided' |
|
num_crops = images['num_crops'] |
|
num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops] |
|
|
|
images, image_sizes = images['pixel_values'], images['image_sizes'] |
|
|
|
|
|
image_tags = re.findall(pattern, texts) |
|
|
|
|
|
image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags] |
|
unique_image_ids = sorted(list(set(image_ids))) |
|
|
|
|
|
assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}" |
|
|
|
assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images" |
|
|
|
image_ids_pad = [[-iid]*num_img_tokens[iid-1] for iid in image_ids] |
|
|
|
def insert_separator(X, sep_list): |
|
if len(X) > len(sep_list): |
|
sep_list.append([]) |
|
return [ele for sublist in zip(X, sep_list) for ele in sublist] |
|
input_ids = [] |
|
offset = 0 |
|
for x in insert_separator(prompt_chunks, image_ids_pad): |
|
input_ids.extend(x[offset:]) |
|
|
|
input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0) |
|
attention_mask = (input_ids > -1000000).to(torch.long) |
|
|
|
return BatchFeature(data={"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"pixel_values": images, |
|
"image_sizes": image_sizes}) |
|
|
|
|
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
|
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |