haipingwu commited on
Commit
b330978
1 Parent(s): 7da0ee8

fix import

Browse files
Files changed (2) hide show
  1. image_embedding_phi3_v.py +0 -322
  2. modeling_phi3_v.py +304 -2
image_embedding_phi3_v.py DELETED
@@ -1,322 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- import torch
17
- from torch import nn
18
- from transformers import CLIPVisionConfig, CLIPVisionModel, PretrainedConfig
19
- from transformers.models.clip.modeling_clip import CLIPAttention
20
- from transformers.utils import logging
21
-
22
- try:
23
- from flash_attn import flash_attn_func
24
- except ImportError:
25
- pass
26
-
27
- logger = logging.get_logger(__name__)
28
-
29
-
30
- MAX_INPUT_ID = int(1e9)
31
-
32
- CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
33
- attention_dropout=0.0,
34
- dropout=0.0,
35
- hidden_act="quick_gelu",
36
- hidden_size=1024,
37
- image_size=336,
38
- initializer_factor=1.0,
39
- initializer_range=0.02,
40
- intermediate_size=4096,
41
- layer_norm_eps=1e-05,
42
- num_attention_heads=16,
43
- num_channels=3,
44
- num_hidden_layers=24,
45
- patch_size=14,
46
- projection_dim=768
47
- )
48
-
49
- class CLIPAttentionFA2(CLIPAttention):
50
- """Add flash attention 2 to CLIPAttention. (This is only used in the vision encoder)"""
51
-
52
- def forward(self,
53
- hidden_states,
54
- attention_mask=None,
55
- causal_attention_mask=None,
56
- output_attentions=False,
57
- ):
58
- """Input shape: Batch x Time x Channel"""
59
-
60
- assert attention_mask is None, "CLIPAttentionFA2 does not support attention_mask"
61
- assert causal_attention_mask is None, "CLIPAttentionFA2 does not support causal_attention_mask"
62
- assert output_attentions is False, "CLIPAttentionFA2 does not support output_attentions"
63
-
64
- bsz, tgt_len, embed_dim = hidden_states.size()
65
- query_states = self.q_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
66
- key_states = self.k_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
67
- value_states = self.v_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
68
-
69
- attn_output = flash_attn_func(
70
- query_states,
71
- key_states,
72
- value_states,
73
- dropout_p=self.dropout if self.training else 0.0,
74
- softmax_scale=self.scale,
75
- causal=False,
76
- ).reshape(bsz, tgt_len, embed_dim)
77
-
78
- attn_output = self.out_proj(attn_output)
79
- return attn_output, None
80
-
81
-
82
- class Phi3ImageEmbedding(nn.Module):
83
- """Phi3 Image embedding."""
84
-
85
- def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
86
- super().__init__()
87
-
88
- # n_embed or hidden_size
89
- hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
90
- if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
91
- embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
92
- self.drop = nn.Dropout(embd_drop)
93
- else:
94
- self.drop = None
95
-
96
- self.wte = wte
97
-
98
- if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
99
- assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
100
- assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
101
- assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
102
- assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
103
- clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
104
- self.img_processor = CLIPVisionModel(clip_config)
105
- image_dim_out = config.img_processor['image_dim_out']
106
- self.num_img_tokens = config.img_processor['num_img_tokens']
107
-
108
- # FA2 in CLIP
109
- if config._attn_implementation == 'flash_attention_2':
110
- for layer in self.img_processor.vision_model.encoder.layers:
111
- clip_fa2 = CLIPAttentionFA2(clip_config)
112
- del layer.self_attn
113
- layer.self_attn = clip_fa2
114
- else:
115
- raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
116
-
117
- self.image_dim_out = image_dim_out
118
- self.img_sizes = None
119
-
120
- # global_gn and sub_gn for hd transform, serves as line separator
121
- self.use_hd_transform = kwargs.get('use_hd_transform', False)
122
- self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
123
- self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
124
- # with_hd_transform and with_learnable_separator should have same value
125
- assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
126
- if self.with_learnable_separator:
127
- assert self.use_hd_transform, 'learnable separator is only for hd transform'
128
- # 1024 * 4, merge spatial to channel dimension
129
- self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
130
- self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
131
- logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
132
-
133
- projection_cls = kwargs.get('projection_cls', 'linear')
134
- if projection_cls == 'linear':
135
- self.img_projection = nn.Linear(image_dim_out, hidden_size)
136
- elif projection_cls == 'mlp' and self.use_hd_transform:
137
- dim_projection = hidden_size
138
- depth = 2
139
- layers = [nn.Linear(image_dim_out * 4, dim_projection)]
140
- for _ in range(1, depth):
141
- layers.extend([nn.GELU(),
142
- nn.Linear(dim_projection, dim_projection)])
143
- self.img_projection = nn.Sequential(*layers)
144
- elif projection_cls == 'mlp':
145
- dim_projection = hidden_size
146
- depth = 2
147
- layers = [nn.Linear(image_dim_out, dim_projection)]
148
- for _ in range(1, depth):
149
- layers.extend([nn.GELU(),
150
- nn.Linear(dim_projection, dim_projection)])
151
- self.img_projection = nn.Sequential(*layers)
152
- else:
153
- raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
154
-
155
- self.vocab_size = config.vocab_size
156
- self.img_features = None
157
-
158
- if isinstance(config.img_processor, dict):
159
- self.layer_idx = config.img_processor.get('layer_idx', -2)
160
- self.type_feature = config.img_processor.get('type_feature', 'patch')
161
- else:
162
- self.layer_idx = -2
163
- self.type_feature = 'patch'
164
-
165
-
166
- def set_img_features(self, img_features: torch.FloatTensor) -> None:
167
- self.img_features = img_features
168
-
169
- def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
170
- self.img_sizes = img_sizes
171
-
172
- def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
173
- LAYER_IDX = self.layer_idx
174
- TYPE_FEATURE = self.type_feature
175
-
176
- img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
177
- img_feature = img_processor_output.hidden_states[LAYER_IDX]
178
-
179
- if TYPE_FEATURE == "patch":
180
- patch_feature = img_feature[:, 1:]
181
- return patch_feature
182
-
183
- raise NotImplementedError
184
-
185
- def forward(
186
- self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None
187
- ) -> torch.FloatTensor:
188
- input_shape = input_ids.size()
189
- input_ids = input_ids.view(-1, input_shape[-1])
190
-
191
- # positions for image tokens
192
- positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=True)
193
- has_image = len(positions[0].tolist()) > 0
194
- input_ids = input_ids.clamp_min(0).clamp_max(self.vocab_size).detach()
195
- hidden_states = self.wte(input_ids)
196
-
197
- if has_image:
198
- assert self.use_hd_transform
199
- num_images, num_crops, c, h, w = pixel_values.shape
200
- assert c == 3 and h == w == 336
201
- img_features = self.get_img_features(pixel_values.flatten(0, 1)).reshape(
202
- num_images, num_crops, -1, self.image_dim_out
203
- )
204
- image_features_proj = self.hd_feature_transform(img_features, image_sizes)
205
- hidden_states = hidden_states.index_put(
206
- positions, image_features_proj, accumulate=False
207
- )
208
-
209
- if self.drop is not None:
210
- hidden_states = self.drop(hidden_states)
211
-
212
- return hidden_states
213
-
214
- def hd_feature_transform(self, image_features, image_sizes):
215
- """
216
- image_features: (num_images, num_crops+1, 24*24, 1024)
217
- """
218
- assert (
219
- self.hd_transform_order == 'sub_glb'
220
- ), f'hd_transform_order `{self.hd_transform_order}` not implemented'
221
- if isinstance(self.img_projection, nn.Sequential):
222
- target_device = self.img_projection[0].bias.device
223
- target_dtype = self.img_projection[0].bias.dtype
224
- else: # It's a single nn.Linear layer
225
- target_device = self.img_projection.bias.device
226
- target_dtype = self.img_projection.bias.dtype
227
-
228
- global_image_features = image_features[:, 0] # (num_images, 24*24, 1024)
229
- # global feature can be viewed as a special HD case with num_crops 1x1
230
- global_image_features_hd = self.reshape_hd_patches_2x2merge(global_image_features, 1, 1)
231
- global_image_features_hd_newline = self.add_image_newline(global_image_features_hd)
232
-
233
- all_image_embeddings = []
234
- # need a for loop to process each image because of different image sizes
235
- # (patch arrangement is different for each image)
236
- for i, img_size in enumerate(image_sizes):
237
- h, w = img_size
238
- h_crop = h // 336
239
- w_crop = w // 336
240
- num_crops = h_crop * w_crop
241
-
242
- # NOTE: real num_crops is padded
243
- # (num_crops, 24*24, 1024)
244
- sub_image_features = image_features[i, 1 : 1 + num_crops]
245
- sub_image_features_hd = self.reshape_hd_patches_2x2merge(
246
- sub_image_features, h_crop, w_crop
247
- )
248
- sub_image_features_hd_newline = self.add_image_newline(sub_image_features_hd)
249
-
250
- # [sub features, separator, global features]
251
- all_image_embeddings.extend(
252
- [
253
- sub_image_features_hd_newline.squeeze(0), # (h_crop*12*(w_crop*12+1), 4096)
254
- self.glb_GN.squeeze(0),
255
- global_image_features_hd_newline[i],
256
- ]
257
- )
258
-
259
- image_features_proj = self.img_projection(
260
- torch.cat(all_image_embeddings, dim=0).to(target_device).to(target_dtype)
261
- )
262
-
263
- return image_features_proj
264
-
265
- def reshape_hd_patches_2x2merge(self, image_features, h_crop, w_crop):
266
- """
267
- image_features: (num_images*num_crops, 24*24, 1024)
268
- output: (num_images, h_crop*12, w_crop*12, 4096), h_crop*w_crop == num_crops
269
- """
270
- N, L, C = image_features.shape
271
- assert L == 24 * 24 and C == 1024 and N % (h_crop * w_crop) == 0
272
- num_images = N // (h_crop * w_crop)
273
- H = int(L**0.5)
274
- image_features_hd = (
275
- image_features.reshape(N, H, H, C) # N, 24, 24, 1024
276
- .reshape(N, H // 2, 2, H // 2, 2, C) # N, 12, 2, 12, 2, 1024
277
- .permute(0, 1, 3, 2, 4, 5) # N, 12, 12, 2, 2, 1024
278
- .reshape(N, -1, 4 * C) # N, 144, 4096
279
- .reshape(
280
- num_images, h_crop, w_crop, H // 2, H // 2, -1
281
- ) # n_img, h_crop, w_crop, 12, 12, 4096
282
- .permute(0, 1, 3, 2, 4, 5) # n_img, h_crop, 12, w_crop, 12, 4096
283
- .reshape(
284
- num_images, h_crop * H // 2, w_crop * H // 2, 4 * C
285
- ) # n_img, h_crop*12, w_crop*12, 4096
286
- )
287
-
288
- # alternative implementation using einops
289
- # from einops import rearrange
290
- # image_features_nhwc = rearrange(
291
- # image_features,
292
- # 'N (H W) c -> N H W c',
293
- # H=H,
294
- # W=H,
295
- # )
296
- # image_features_2x2merge = rearrange(
297
- # image_features_nhwc,
298
- # 'N (h h_pool) (w w_pool) c -> N h w (h_pool w_pool c)',
299
- # h_pool=2,
300
- # w_pool=2,
301
- # )
302
- # image_features_hd = rearrange(
303
- # image_features_2x2merge,
304
- # '(n_img h_crop w_crop) h w C -> n_img (h_crop h) (w_crop w) C',
305
- # h_crop=h_crop,
306
- # w_crop=w_crop,
307
- # )
308
-
309
- return image_features_hd
310
-
311
- def add_image_newline(self, image_features_hd):
312
- """
313
- image_features_hd: (num_images, h_crop*12, w_crop*12, 4096)
314
- output: (num_images, (h_crop*12) * (w_crop*12+1), 4096)
315
- """
316
- num_images, h, w, hid_dim = image_features_hd.shape
317
- # add the newline token to the HD image feature patches
318
- newline_embeddings = self.sub_GN.expand(num_images, h, -1, -1) # (n_img, h, 1, hid_dim)
319
- image_features_hd_newline = torch.cat(
320
- [image_features_hd, newline_embeddings], dim=2
321
- ).reshape(num_images, -1, hid_dim)
322
- return image_features_hd_newline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modeling_phi3_v.py CHANGED
@@ -45,8 +45,6 @@ from transformers.utils import (
45
  replace_return_docstrings,
46
  )
47
  from .configuration_phi3_v import Phi3VConfig
48
- from .image_embedding_phi3_v import Phi3ImageEmbedding
49
-
50
 
51
  try:
52
  from flash_attn import flash_attn_func, flash_attn_varlen_func
@@ -56,6 +54,310 @@ try:
56
  except ImportError:
57
  pass
58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  logger = logging.get_logger(__name__)
60
 
61
  _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-vision-128k-instruct"
 
45
  replace_return_docstrings,
46
  )
47
  from .configuration_phi3_v import Phi3VConfig
 
 
48
 
49
  try:
50
  from flash_attn import flash_attn_func, flash_attn_varlen_func
 
54
  except ImportError:
55
  pass
56
 
57
+ import torch
58
+ from torch import nn
59
+ from transformers import CLIPVisionConfig, CLIPVisionModel, PretrainedConfig
60
+ from transformers.models.clip.modeling_clip import CLIPAttention
61
+ from transformers.utils import logging
62
+
63
+ logger = logging.get_logger(__name__)
64
+
65
+
66
+ MAX_INPUT_ID = int(1e9)
67
+
68
+ CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
69
+ attention_dropout=0.0,
70
+ dropout=0.0,
71
+ hidden_act="quick_gelu",
72
+ hidden_size=1024,
73
+ image_size=336,
74
+ initializer_factor=1.0,
75
+ initializer_range=0.02,
76
+ intermediate_size=4096,
77
+ layer_norm_eps=1e-05,
78
+ num_attention_heads=16,
79
+ num_channels=3,
80
+ num_hidden_layers=24,
81
+ patch_size=14,
82
+ projection_dim=768
83
+ )
84
+
85
+ class CLIPAttentionFA2(CLIPAttention):
86
+ """Add flash attention 2 to CLIPAttention. (This is only used in the vision encoder)"""
87
+
88
+ def forward(self,
89
+ hidden_states,
90
+ attention_mask=None,
91
+ causal_attention_mask=None,
92
+ output_attentions=False,
93
+ ):
94
+ """Input shape: Batch x Time x Channel"""
95
+
96
+ assert attention_mask is None, "CLIPAttentionFA2 does not support attention_mask"
97
+ assert causal_attention_mask is None, "CLIPAttentionFA2 does not support causal_attention_mask"
98
+ assert output_attentions is False, "CLIPAttentionFA2 does not support output_attentions"
99
+
100
+ bsz, tgt_len, embed_dim = hidden_states.size()
101
+ query_states = self.q_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
102
+ key_states = self.k_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
103
+ value_states = self.v_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
104
+
105
+ attn_output = flash_attn_func(
106
+ query_states,
107
+ key_states,
108
+ value_states,
109
+ dropout_p=self.dropout if self.training else 0.0,
110
+ softmax_scale=self.scale,
111
+ causal=False,
112
+ ).reshape(bsz, tgt_len, embed_dim)
113
+
114
+ attn_output = self.out_proj(attn_output)
115
+ return attn_output, None
116
+
117
+
118
+ class Phi3ImageEmbedding(nn.Module):
119
+ """Phi3 Image embedding."""
120
+
121
+ def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
122
+ super().__init__()
123
+
124
+ # n_embed or hidden_size
125
+ hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
126
+ if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
127
+ embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
128
+ self.drop = nn.Dropout(embd_drop)
129
+ else:
130
+ self.drop = None
131
+
132
+ self.wte = wte
133
+
134
+ if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
135
+ assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
136
+ assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
137
+ assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
138
+ assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
139
+ clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
140
+ self.img_processor = CLIPVisionModel(clip_config)
141
+ image_dim_out = config.img_processor['image_dim_out']
142
+ self.num_img_tokens = config.img_processor['num_img_tokens']
143
+
144
+ # FA2 in CLIP
145
+ if config._attn_implementation == 'flash_attention_2':
146
+ for layer in self.img_processor.vision_model.encoder.layers:
147
+ clip_fa2 = CLIPAttentionFA2(clip_config)
148
+ del layer.self_attn
149
+ layer.self_attn = clip_fa2
150
+ else:
151
+ raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
152
+
153
+ self.image_dim_out = image_dim_out
154
+ self.img_sizes = None
155
+
156
+ # global_gn and sub_gn for hd transform, serves as line separator
157
+ self.use_hd_transform = kwargs.get('use_hd_transform', False)
158
+ self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
159
+ self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
160
+ # with_hd_transform and with_learnable_separator should have same value
161
+ assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
162
+ if self.with_learnable_separator:
163
+ assert self.use_hd_transform, 'learnable separator is only for hd transform'
164
+ # 1024 * 4, merge spatial to channel dimension
165
+ self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
166
+ self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
167
+ logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
168
+
169
+ projection_cls = kwargs.get('projection_cls', 'linear')
170
+ if projection_cls == 'linear':
171
+ self.img_projection = nn.Linear(image_dim_out, hidden_size)
172
+ elif projection_cls == 'mlp' and self.use_hd_transform:
173
+ dim_projection = hidden_size
174
+ depth = 2
175
+ layers = [nn.Linear(image_dim_out * 4, dim_projection)]
176
+ for _ in range(1, depth):
177
+ layers.extend([nn.GELU(),
178
+ nn.Linear(dim_projection, dim_projection)])
179
+ self.img_projection = nn.Sequential(*layers)
180
+ elif projection_cls == 'mlp':
181
+ dim_projection = hidden_size
182
+ depth = 2
183
+ layers = [nn.Linear(image_dim_out, dim_projection)]
184
+ for _ in range(1, depth):
185
+ layers.extend([nn.GELU(),
186
+ nn.Linear(dim_projection, dim_projection)])
187
+ self.img_projection = nn.Sequential(*layers)
188
+ else:
189
+ raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
190
+
191
+ self.vocab_size = config.vocab_size
192
+ self.img_features = None
193
+
194
+ if isinstance(config.img_processor, dict):
195
+ self.layer_idx = config.img_processor.get('layer_idx', -2)
196
+ self.type_feature = config.img_processor.get('type_feature', 'patch')
197
+ else:
198
+ self.layer_idx = -2
199
+ self.type_feature = 'patch'
200
+
201
+
202
+ def set_img_features(self, img_features: torch.FloatTensor) -> None:
203
+ self.img_features = img_features
204
+
205
+ def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
206
+ self.img_sizes = img_sizes
207
+
208
+ def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
209
+ LAYER_IDX = self.layer_idx
210
+ TYPE_FEATURE = self.type_feature
211
+
212
+ img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
213
+ img_feature = img_processor_output.hidden_states[LAYER_IDX]
214
+
215
+ if TYPE_FEATURE == "patch":
216
+ patch_feature = img_feature[:, 1:]
217
+ return patch_feature
218
+
219
+ raise NotImplementedError
220
+
221
+ def forward(
222
+ self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None
223
+ ) -> torch.FloatTensor:
224
+ input_shape = input_ids.size()
225
+ input_ids = input_ids.view(-1, input_shape[-1])
226
+
227
+ # positions for image tokens
228
+ positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=True)
229
+ has_image = len(positions[0].tolist()) > 0
230
+ input_ids = input_ids.clamp_min(0).clamp_max(self.vocab_size).detach()
231
+ hidden_states = self.wte(input_ids)
232
+
233
+ if has_image:
234
+ assert self.use_hd_transform
235
+ num_images, num_crops, c, h, w = pixel_values.shape
236
+ assert c == 3 and h == w == 336
237
+ img_features = self.get_img_features(pixel_values.flatten(0, 1)).reshape(
238
+ num_images, num_crops, -1, self.image_dim_out
239
+ )
240
+ image_features_proj = self.hd_feature_transform(img_features, image_sizes)
241
+ hidden_states = hidden_states.index_put(
242
+ positions, image_features_proj, accumulate=False
243
+ )
244
+
245
+ if self.drop is not None:
246
+ hidden_states = self.drop(hidden_states)
247
+
248
+ return hidden_states
249
+
250
+ def hd_feature_transform(self, image_features, image_sizes):
251
+ """
252
+ image_features: (num_images, num_crops+1, 24*24, 1024)
253
+ """
254
+ assert (
255
+ self.hd_transform_order == 'sub_glb'
256
+ ), f'hd_transform_order `{self.hd_transform_order}` not implemented'
257
+ if isinstance(self.img_projection, nn.Sequential):
258
+ target_device = self.img_projection[0].bias.device
259
+ target_dtype = self.img_projection[0].bias.dtype
260
+ else: # It's a single nn.Linear layer
261
+ target_device = self.img_projection.bias.device
262
+ target_dtype = self.img_projection.bias.dtype
263
+
264
+ global_image_features = image_features[:, 0] # (num_images, 24*24, 1024)
265
+ # global feature can be viewed as a special HD case with num_crops 1x1
266
+ global_image_features_hd = self.reshape_hd_patches_2x2merge(global_image_features, 1, 1)
267
+ global_image_features_hd_newline = self.add_image_newline(global_image_features_hd)
268
+
269
+ all_image_embeddings = []
270
+ # need a for loop to process each image because of different image sizes
271
+ # (patch arrangement is different for each image)
272
+ for i, img_size in enumerate(image_sizes):
273
+ h, w = img_size
274
+ h_crop = h // 336
275
+ w_crop = w // 336
276
+ num_crops = h_crop * w_crop
277
+
278
+ # NOTE: real num_crops is padded
279
+ # (num_crops, 24*24, 1024)
280
+ sub_image_features = image_features[i, 1 : 1 + num_crops]
281
+ sub_image_features_hd = self.reshape_hd_patches_2x2merge(
282
+ sub_image_features, h_crop, w_crop
283
+ )
284
+ sub_image_features_hd_newline = self.add_image_newline(sub_image_features_hd)
285
+
286
+ # [sub features, separator, global features]
287
+ all_image_embeddings.extend(
288
+ [
289
+ sub_image_features_hd_newline.squeeze(0), # (h_crop*12*(w_crop*12+1), 4096)
290
+ self.glb_GN.squeeze(0),
291
+ global_image_features_hd_newline[i],
292
+ ]
293
+ )
294
+
295
+ image_features_proj = self.img_projection(
296
+ torch.cat(all_image_embeddings, dim=0).to(target_device).to(target_dtype)
297
+ )
298
+
299
+ return image_features_proj
300
+
301
+ def reshape_hd_patches_2x2merge(self, image_features, h_crop, w_crop):
302
+ """
303
+ image_features: (num_images*num_crops, 24*24, 1024)
304
+ output: (num_images, h_crop*12, w_crop*12, 4096), h_crop*w_crop == num_crops
305
+ """
306
+ N, L, C = image_features.shape
307
+ assert L == 24 * 24 and C == 1024 and N % (h_crop * w_crop) == 0
308
+ num_images = N // (h_crop * w_crop)
309
+ H = int(L**0.5)
310
+ image_features_hd = (
311
+ image_features.reshape(N, H, H, C) # N, 24, 24, 1024
312
+ .reshape(N, H // 2, 2, H // 2, 2, C) # N, 12, 2, 12, 2, 1024
313
+ .permute(0, 1, 3, 2, 4, 5) # N, 12, 12, 2, 2, 1024
314
+ .reshape(N, -1, 4 * C) # N, 144, 4096
315
+ .reshape(
316
+ num_images, h_crop, w_crop, H // 2, H // 2, -1
317
+ ) # n_img, h_crop, w_crop, 12, 12, 4096
318
+ .permute(0, 1, 3, 2, 4, 5) # n_img, h_crop, 12, w_crop, 12, 4096
319
+ .reshape(
320
+ num_images, h_crop * H // 2, w_crop * H // 2, 4 * C
321
+ ) # n_img, h_crop*12, w_crop*12, 4096
322
+ )
323
+
324
+ # alternative implementation using einops
325
+ # from einops import rearrange
326
+ # image_features_nhwc = rearrange(
327
+ # image_features,
328
+ # 'N (H W) c -> N H W c',
329
+ # H=H,
330
+ # W=H,
331
+ # )
332
+ # image_features_2x2merge = rearrange(
333
+ # image_features_nhwc,
334
+ # 'N (h h_pool) (w w_pool) c -> N h w (h_pool w_pool c)',
335
+ # h_pool=2,
336
+ # w_pool=2,
337
+ # )
338
+ # image_features_hd = rearrange(
339
+ # image_features_2x2merge,
340
+ # '(n_img h_crop w_crop) h w C -> n_img (h_crop h) (w_crop w) C',
341
+ # h_crop=h_crop,
342
+ # w_crop=w_crop,
343
+ # )
344
+
345
+ return image_features_hd
346
+
347
+ def add_image_newline(self, image_features_hd):
348
+ """
349
+ image_features_hd: (num_images, h_crop*12, w_crop*12, 4096)
350
+ output: (num_images, (h_crop*12) * (w_crop*12+1), 4096)
351
+ """
352
+ num_images, h, w, hid_dim = image_features_hd.shape
353
+ # add the newline token to the HD image feature patches
354
+ newline_embeddings = self.sub_GN.expand(num_images, h, -1, -1) # (n_img, h, 1, hid_dim)
355
+ image_features_hd_newline = torch.cat(
356
+ [image_features_hd, newline_embeddings], dim=2
357
+ ).reshape(num_images, -1, hid_dim)
358
+ return image_features_hd_newline
359
+
360
+
361
  logger = logging.get_logger(__name__)
362
 
363
  _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-vision-128k-instruct"