Pengcheng He
commited on
Commit
•
73c4bf9
1
Parent(s):
90b9806
Create deberta large mnli fine-tuned model
Browse files- README.md +38 -0
- bpe_encoder.bin +3 -0
- config.json +18 -0
- pytorch_model.bin +3 -0
- tokenizer_config.json +3 -0
README.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
|
3 |
+
license: mit
|
4 |
+
---
|
5 |
+
|
6 |
+
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
|
7 |
+
|
8 |
+
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
|
9 |
+
|
10 |
+
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
|
11 |
+
|
12 |
+
This is the DeBERTa large model fine-tuned with MNLI task.
|
13 |
+
|
14 |
+
#### Fine-tuning on NLU tasks
|
15 |
+
|
16 |
+
We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
|
17 |
+
|
18 |
+
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B|
|
19 |
+
|-------------------|-----------|-----------|--------|-------|------|------|------|------|------|-----|
|
20 |
+
| BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6 | 93.2 | 92.3 | 60.6 | 70.4 | 88.0 | 91.3 |90.0 |
|
21 |
+
| RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2 | 96.4 | 93.9 | 68.0 | 86.6 | 90.9 | 92.2 |92.4 |
|
22 |
+
| XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8 | 97.0 | 94.9 | 69.0 | 85.9 | 90.8 | 92.3 |92.5 |
|
23 |
+
| **DeBERTa-Large** | 95.5/90.1 | 90.7/88.0 | 91.1 | 96.5 | 95.3 | 69.5 | 88.1 | 92.5 | 92.3 |92.5 |
|
24 |
+
|
25 |
+
### Citation
|
26 |
+
|
27 |
+
If you find DeBERTa useful for your work, please cite the following paper:
|
28 |
+
|
29 |
+
``` latex
|
30 |
+
@misc{he2020deberta,
|
31 |
+
title={DeBERTa: Decoding-enhanced BERT with Disentangled Attention},
|
32 |
+
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
|
33 |
+
year={2020},
|
34 |
+
eprint={2006.03654},
|
35 |
+
archivePrefix={arXiv},
|
36 |
+
primaryClass={cs.CL}
|
37 |
+
}
|
38 |
+
```
|
bpe_encoder.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7c6f9eecb461c01e09c00656ccf3e27944b9e74bfe29e51632b13d3cd9d6c8e
|
3 |
+
size 3917897
|
config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attention_probs_dropout_prob": 0.1,
|
3 |
+
"hidden_act": "gelu",
|
4 |
+
"hidden_dropout_prob": 0.1,
|
5 |
+
"hidden_size": 1024,
|
6 |
+
"initializer_range": 0.02,
|
7 |
+
"intermediate_size": 4096,
|
8 |
+
"max_position_embeddings": 512,
|
9 |
+
"relative_attention": true,
|
10 |
+
"pos_att_type": "c2p|p2c",
|
11 |
+
"layer_norm_eps": 1e-7,
|
12 |
+
"max_relative_positions": -1,
|
13 |
+
"position_biased_input": false,
|
14 |
+
"num_attention_heads": 16,
|
15 |
+
"num_hidden_layers": 24,
|
16 |
+
"type_vocab_size": 0,
|
17 |
+
"vocab_size": 50265
|
18 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3abd875c9e6dd137a689a1fa1a433f0c2d6bc7462afc42a0095878f88f23be87
|
3 |
+
size 1624928186
|
tokenizer_config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_lower_case": false
|
3 |
+
}
|