Pengcheng He
commited on
Commit
•
e464797
1
Parent(s):
766641b
Improve README
Browse files- README.md +16 -13
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -7,28 +7,31 @@ thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
|
|
7 |
license: mit
|
8 |
---
|
9 |
|
10 |
-
##
|
11 |
|
12 |
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
The DeBERTa V3 base model comes with 12 layers and a hidden size of 768.
|
19 |
|
20 |
|
21 |
#### Fine-tuning on NLU tasks
|
22 |
|
23 |
-
We present the dev results on SQuAD
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|-------------------|-----------|-----------|--------|
|
27 |
-
| RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 |
|
28 |
-
| XLNet-base | -/- | -/80.2 | 86.8 |
|
29 |
-
| DeBERTa-base | 93.1/87.2 | 86.2/83.1 | 88.8 |
|
30 |
-
| **DeBERTa-v3-base** | 93.9/88.4 | 88.4/85.4 | 90.6 |
|
31 |
-
| DeBERTa-v3-base+SiFT | -/- | -/- | **91.0** |
|
32 |
|
33 |
#### Fine-tuning with HF transformers
|
34 |
|
@@ -67,7 +70,7 @@ python -m torch.distributed.launch --nproc_per_node=${num_gpus} \
|
|
67 |
|
68 |
### Citation
|
69 |
|
70 |
-
If you find DeBERTa useful for your work, please cite the following
|
71 |
|
72 |
``` latex
|
73 |
@misc{he2021debertav3,
|
|
|
7 |
license: mit
|
8 |
---
|
9 |
|
10 |
+
## DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing
|
11 |
|
12 |
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
|
13 |
|
14 |
+
In [DeBERTa V3](https://arxiv.org/abs/2111.09543), we further improved the efficiency of DeBERTa using ELECTRA-Style pre-training with Gradient Disentangled Embedding Sharing. Compared to DeBERTa, our V3 version significantly improves the model performance on downstream tasks. You can find more technique details about the new model from our [paper](https://arxiv.org/abs/2111.09543).
|
15 |
|
16 |
+
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more implementation details and updates.
|
17 |
|
18 |
+
The DeBERTa V3 base model comes with 12 layers and a hidden size of 768. It has only 86M backbone parameters with a vocabulary containing 128K tokens which introduces 98M parameters in the Embedding layer. This model was trained using the 160GB data as DeBERTa V2.
|
19 |
|
20 |
|
21 |
#### Fine-tuning on NLU tasks
|
22 |
|
23 |
+
We present the dev results on SQuAD 2.0 and MNLI tasks.
|
24 |
+
|
25 |
+
| Model |Vocabulary(K)|Backbone #Params(M)| SQuAD 2.0(F1/EM) | MNLI-m/mm(ACC)|
|
26 |
+
|-------------------|----------|-------------------|-----------|----------|
|
27 |
+
| RoBERTa-base |50 |86 | 83.7/80.5 | 87.6/- |
|
28 |
+
| XLNet-base |32 |92 | -/80.2 | 86.8/- |
|
29 |
+
| ELECTRA-base |30 |86 | -/80.5 | 88.8/ |
|
30 |
+
| DeBERTa-base |50 |100 | 86.2/83.1| 88.8/88.5|
|
31 |
+
| DeBERTa-v3-base |128|86 | 88.4/85.4 | 90.6/90.7|
|
32 |
+
| DeBERTa-v3-base + SiFT |128|86 | -/- | 91.0/-|
|
33 |
|
34 |
+
We present the dev results on SQuAD 1.1/2.0 and MNLI tasks.
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
#### Fine-tuning with HF transformers
|
37 |
|
|
|
70 |
|
71 |
### Citation
|
72 |
|
73 |
+
If you find DeBERTa useful for your work, please cite the following papers:
|
74 |
|
75 |
``` latex
|
76 |
@misc{he2021debertav3,
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 371146213
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:691d48a2800b926a19e3051def466fc2cca4f59a15e42ce4a0cf7f1b380b5e33
|
3 |
size 371146213
|