Pengcheng He
commited on
Commit
•
02a9971
1
Parent(s):
65a695b
Add mDeBERTa base model
Browse files- README.md +82 -0
- config.json +22 -0
- pytorch_model.bin +3 -0
- spm.model +3 -0
- tokenizer_config.json +4 -0
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- deberta
|
5 |
+
- deberta-v3
|
6 |
+
- mdeberta
|
7 |
+
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
|
8 |
+
license: mit
|
9 |
+
---
|
10 |
+
|
11 |
+
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
|
12 |
+
|
13 |
+
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
|
14 |
+
|
15 |
+
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
|
16 |
+
|
17 |
+
In DeBERTa V3, we replaced the MLM objective with the RTD(Replaced Token Detection) objective introduced by ELECTRA for pre-training, as well as some innovations to be introduced in our upcoming paper. Compared to DeBERTa-V2, our V3 version significantly improves the model performance in downstream tasks. You can find a simple introduction about the model from the appendix A11 in our original [paper](https://arxiv.org/abs/2006.03654), but we will provide more details in a separate write-up.
|
18 |
+
|
19 |
+
mDeBERTa is multilingual version of DeBERTa which use the same structure as DeBERTa and was trained with CC100 multilingual data.
|
20 |
+
|
21 |
+
The mDeBERTa V3 base model comes with 12 layers and a hidden size of 768. Its total parameter number is 280M since we use a vocabulary containing 250K tokens which introduce 190M parameters in the Embedding layer. This model was trained using the 2.5T CC100 data as XLM-R.
|
22 |
+
|
23 |
+
|
24 |
+
#### Fine-tuning on NLU tasks
|
25 |
+
|
26 |
+
We present the dev results on XNLI with zero-shot crosslingual transfer setting, i.e. training with english data only, test with other languages.
|
27 |
+
|
28 |
+
| Model | en | fr| es | de | el | bg | ru |tr |ar |vi | th | zh | hi | sw | ur | avg |
|
29 |
+
|-------------------|----|----|---- |-- |-- |-- | -- |-- |-- |-- | -- | -- | -- | -- | -- | ----|
|
30 |
+
| XLM-R-base |85.8|79.7|80.7 |78.7 |77.5 |79.6 |78.1 |74.2 |73.8 |76.5 |74.6 |76.7| 72.4| 66.5| 68.3|75.6 |
|
31 |
+
| mDeBERTa-base |88.2|82.6|84.4 |82.7 |82.3 |82.4 |80.8 |79.5 |78.5 |78.1 |76.4 |79.5| 75.9| 73.9| 72.4|79.8 +/- 0.2|
|
32 |
+
|
33 |
+
#### Fine-tuning with HF transformers
|
34 |
+
|
35 |
+
```bash
|
36 |
+
#!/bin/bash
|
37 |
+
|
38 |
+
cd transformers/examples/pytorch/text-classification/
|
39 |
+
|
40 |
+
pip install datasets
|
41 |
+
|
42 |
+
output_dir="ds_results"
|
43 |
+
|
44 |
+
num_gpus=8
|
45 |
+
|
46 |
+
batch_size=4
|
47 |
+
|
48 |
+
python -m torch.distributed.launch --nproc_per_node=${num_gpus} \
|
49 |
+
run_xnli.py \
|
50 |
+
--model_name_or_path microsoft/deberta-v3-base \
|
51 |
+
--task_name $TASK_NAME \
|
52 |
+
--do_train \
|
53 |
+
--do_eval \
|
54 |
+
--train_language en \
|
55 |
+
--language en \
|
56 |
+
--evaluation_strategy steps \
|
57 |
+
--max_seq_length 256 \
|
58 |
+
--warmup_steps 3000 \
|
59 |
+
--per_device_train_batch_size ${batch_size} \
|
60 |
+
--learning_rate 2e-5 \
|
61 |
+
--num_train_epochs 6 \
|
62 |
+
--output_dir $output_dir \
|
63 |
+
--overwrite_output_dir \
|
64 |
+
--logging_steps 1000 \
|
65 |
+
--logging_dir $output_dir
|
66 |
+
|
67 |
+
```
|
68 |
+
|
69 |
+
### Citation
|
70 |
+
|
71 |
+
If you find DeBERTa useful for your work, please cite the following paper:
|
72 |
+
|
73 |
+
``` latex
|
74 |
+
@inproceedings{
|
75 |
+
he2021deberta,
|
76 |
+
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
|
77 |
+
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
|
78 |
+
booktitle={International Conference on Learning Representations},
|
79 |
+
year={2021},
|
80 |
+
url={https://openreview.net/forum?id=XPZIaotutsD}
|
81 |
+
}
|
82 |
+
```
|
config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "deberta-v2",
|
3 |
+
"attention_probs_dropout_prob": 0.1,
|
4 |
+
"hidden_act": "gelu",
|
5 |
+
"hidden_dropout_prob": 0.1,
|
6 |
+
"hidden_size": 768,
|
7 |
+
"initializer_range": 0.02,
|
8 |
+
"intermediate_size": 3072,
|
9 |
+
"max_position_embeddings": 512,
|
10 |
+
"relative_attention": true,
|
11 |
+
"position_buckets": 256,
|
12 |
+
"norm_rel_ebd": "layer_norm",
|
13 |
+
"share_att_key": true,
|
14 |
+
"pos_att_type": "p2c|c2p",
|
15 |
+
"layer_norm_eps": 1e-7,
|
16 |
+
"max_relative_positions": -1,
|
17 |
+
"position_biased_input": false,
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"type_vocab_size": 0,
|
21 |
+
"vocab_size": 251000
|
22 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05c748186a22f523505099ce137f90dd4e55f875a4035c11350aaa125932230c
|
3 |
+
size 560166373
|
spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13c8d666d62a7bc4ac8f040aab68e942c861f93303156cc28f5c7e885d86d6e3
|
3 |
+
size 4305025
|
tokenizer_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_lower_case": false,
|
3 |
+
"vocab_type": "spm"
|
4 |
+
}
|