File size: 2,689 Bytes
26596a8 9e94239 26596a8 468d2cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
language: en
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
tags:
- text-classification
license: mit
---
# XtremeDistil-Transformers for Distilling Massive Neural Networks
XtremeDistil is a distilled task-agnostic transformer model leveraging multi-task distillation techniques from the paper "[XtremeDistil: Multi-stage Distillation for Massive Multilingual Models](https://www.aclweb.org/anthology/2020.acl-main.202.pdf)" and "[MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers](https://arxiv.org/abs/2002.10957)" with the following "[Github code](https://github.com/microsoft/xtreme-distil-transformers)".
This l6-h384 checkpoint with **6** layers, **384** hidden size, **12** attention heads corresponds to **22 million** parameters with **5.3x** speedup over BERT-base.
The following table shows the results on GLUE dev set and SQuAD-v2.
| Models | #Params | Speedup | MNLI | QNLI | QQP | RTE | SST | MRPC | SQUAD2 | Avg |
|----------------|--------|---------|------|------|------|------|------|------|--------|-------|
| BERT | 109 | 1x | 84.5 | 91.7 | 91.3 | 68.6 | 93.2 | 87.3 | 76.8 | 84.8 |
| DistilBERT | 66 | 2x | 82.2 | 89.2 | 88.5 | 59.9 | 91.3 | 87.5 | 70.7 | 81.3 |
| TinyBERT | 66 | 2x | 83.5 | 90.5 | 90.6 | 72.2 | 91.6 | 88.4 | 73.1 | 84.3 |
| MiniLM | 66 | 2x | 84.0 | 91.0 | 91.0 | 71.5 | 92.0 | 88.4 | 76.4 | 84.9 |
| MiniLM | 22 | 5.3x | 82.8 | 90.3 | 90.6 | 68.9 | 91.3 | 86.6 | 72.9 | 83.3 |
| XtremeDistil | 22 | 5.3x | 85.4 | 90.3 | 91.0 | 80.9 | 92.3 | 90.0 | 76.6 | 86.6 |
If you use this checkpoint in your work, please cite:
``` latex
@inproceedings{mukherjee-hassan-awadallah-2020-xtremedistil,
title = "{X}treme{D}istil: Multi-stage Distillation for Massive Multilingual Models",
author = "Mukherjee, Subhabrata and
Hassan Awadallah, Ahmed",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.202",
doi = "10.18653/v1/2020.acl-main.202",
pages = "2221--2234",
}
```
``` latex
@misc{wang2020minilm,
title={MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers},
author={Wenhui Wang and Furu Wei and Li Dong and Hangbo Bao and Nan Yang and Ming Zhou},
year={2020},
eprint={2002.10957},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|