Tess-M-v1.3 / README.md
leaderboard-pt-pr-bot's picture
Adding the Open Portuguese LLM Leaderboard Evaluation Results
5694a13 verified
|
raw
history blame
5.91 kB
---
license: other
license_name: yi-34b
license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE
model-index:
- name: Tess-M-v1.3
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 72.36
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=migtissera/Tess-M-v1.3
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 64.81
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=migtissera/Tess-M-v1.3
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 55.58
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=migtissera/Tess-M-v1.3
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 91.46
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=migtissera/Tess-M-v1.3
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 78.33
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=migtissera/Tess-M-v1.3
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 80.55
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=migtissera/Tess-M-v1.3
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 73.97
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=migtissera/Tess-M-v1.3
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 66.63
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=migtissera/Tess-M-v1.3
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 73.99
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=migtissera/Tess-M-v1.3
name: Open Portuguese LLM Leaderboard
---
# Note:
This version is the stable release. The issues that were present in versions 1.0, 1.1 and 1.2 all have been rectified. Thank you for your patience while R&D was conducted. Enjoy!
This model have been tested on very long context length. Model produced slight repetition, but it was very minor. I recommend testing the model to your usecase and limiting the context length. Here's my conversation: https://migel.substack.com/p/testing-tess-m-v13
As can be seen, "USER:" and "SYSTEM: Answer the question thoughtfully and intelligently. Always answer without hesitation." was presented by the model in the latter part of the conversation.
# Learnings:
Here's my learnings going from Tess-v1.0 to Tess-v1.3: https://migel.substack.com/p/learnings-from-training-tess
# Tess
![Tess](https://huggingface.co/migtissera/Tess-M-v1.0/resolve/main/Tess.png)
Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series. Tess-M-v1.3 was trained on the Yi-34B-200K base.
# Prompt Format:
```
SYSTEM: <ANY SYSTEM CONTEXT>
USER:
ASSISTANT:
```
# Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/migtissera/Tess-M-v1.3) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
| Metric | Value |
|--------------------------|---------|
|Average |**73.08**|
|ENEM Challenge (No Images)| 72.36|
|BLUEX (No Images) | 64.81|
|OAB Exams | 55.58|
|Assin2 RTE | 91.46|
|Assin2 STS | 78.33|
|FaQuAD NLI | 80.55|
|HateBR Binary | 73.97|
|PT Hate Speech Binary | 66.63|
|tweetSentBR | 73.99|