--- license: mit language: - en tags: - robotics - motion planning --- # Neural MP Neural MP is a machine learning-based motion planning system for robotic manipulation tasks. It combines neural networks trained on large-scale simulated data with lightweight optimization techniques to generate efficient, collision-free trajectories. Neural MP is designed to generalize across diverse environments and obstacle configurations, making it suitable for both simulated and real-world robotic applications. This repository contains the model weights for Neural MP. All Neural MP checkpoints, as well as our [codebase](https://github.com/mihdalal/neuralmotionplanner) are released under an MIT License. For full details, please read our [paper](https://mihdalal.github.io/neuralmotionplanner/resources/paper.pdf) and see [our project page](https://mihdalal.github.io/neuralmotionplanner/). ## Model Summary - **Developed by:** The Neural MP team consisting of researchers from Carnegie Mellon University. - **Language(s) (NLP):** en - **License:** MIT - **Pretraining Dataset:** Coming soon - **Repository:** [https://github.com/mihdalal/neuralmotionplanner](https://github.com/mihdalal/neuralmotionplanner) - **Paper:** Coming soon - **Project Page & Videos:** [https://mihdalal.github.io/neuralmotionplanner/](https://mihdalal.github.io/neuralmotionplanner/) ## Installation Please read [here](https://github.com/mihdalal/neural_mp?tab=readme-ov-file#installation-instructions) for detailed instructions ## Usage Neural MP model takes in 3D point cloud and start & goal angles of the Franka robot as input, and predict 7-DoF delta joint actions. We provide a wrapper class [NeuralMP](https://github.com/mihdalal/neural_mp/blob/master/neural_mp/real_utils/neural_motion_planner.py) for inference and deploy our model in the real world. Here's an deployment example with the Manimo Franka control library: Note: using Manimo is not required, you may use other Franka control libraries by creating a wrapper class which inherits from FrankaRealEnv (see [franka_real_env.py](https://github.com/mihdalal/neural_mp/blob/master/neural_mp/envs/franka_real_env.py)) ```python import argparse import numpy as np from neural_mp.envs.franka_real_env import FrankaRealEnvManimo from neural_mp.real_utils.neural_motion_planner import NeuralMP if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--mdl_url", type=str, default="mihdalal/NeuralMP", help="hugging face url to load the neural_mp model", ) parser.add_argument( "--cache-name", type=str, default="scene1_single_blcok", help="Specify the scene cache file with pcd and rgb data", ) parser.add_argument( "--use-cache", action="store_true", help=("If set, will use pre-stored point clouds"), ) parser.add_argument( "--debug-combined-pcd", action="store_true", help=("If set, will show visualization of the combined pcd"), ) parser.add_argument( "--denoise-pcd", action="store_true", help=("If set, will apply denoising to the pcds"), ) parser.add_argument( "--train-mode", action="store_true", help=("If set, will eval with policy in training mode") ) parser.add_argument( "--tto", action="store_true", help=("If set, will apply test time optimization") ) parser.add_argument( "--in-hand", action="store_true", help=("If set, will enable in hand mode for eval") ) parser.add_argument( "--in-hand-params", nargs="+", type=float, default=[0.1, 0.1, 0.1, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 1.0], help="Specify the bounding box of the in hand object. 10 params in total [size(xyz), pos(xyz), ori(xyzw)] 3+3+4.", ) args = parser.parse_args() env = FrankaRealEnvManimo() neural_mp = NeuralMP( env=env, model_url=args.mdl_url, train_mode=args.train_mode, in_hand=args.in_hand, in_hand_params=args.in_hand_params, visualize=True, ) points, colors = neural_mp.get_scene_pcd( use_cache=args.use_cache, cache_name=args.cache_name, debug_combined_pcd=args.debug_combined_pcd, denoise=args.denoise_pcd, ) # specify start and goal configurations start_config = np.array([-0.538, 0.628, -0.061, -1.750, 0.126, 2.418, 1.610]) goal_config = np.array([1.067, 0.847, -0.591, -1.627, 0.623, 2.295, 2.580]) if args.tto: trajectory = neural_mp.motion_plan_with_tto( start_config=start_config, goal_config=goal_config, points=points, colors=colors, ) else: trajectory = neural_mp.motion_plan( start_config=start_config, goal_config=goal_config, points=points, colors=colors, ) success, joint_error = neural_mp.execute_motion_plan(trajectory, speed=0.2) ```