update model card README.md
Browse files
README.md
CHANGED
@@ -3,7 +3,7 @@ license: cc-by-nc-sa-4.0
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
-
-
|
7 |
metrics:
|
8 |
- precision
|
9 |
- recall
|
@@ -16,24 +16,24 @@ model-index:
|
|
16 |
name: Token Classification
|
17 |
type: token-classification
|
18 |
dataset:
|
19 |
-
name:
|
20 |
-
type:
|
21 |
config: pasha
|
22 |
split: test
|
23 |
args: pasha
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -41,13 +41,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
41 |
|
42 |
# pasha
|
43 |
|
44 |
-
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -72,13 +72,22 @@ The following hyperparameters were used during training:
|
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
-
- training_steps:
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| No log | 2.13 | 100 | 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
### Framework versions
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
6 |
+
- pasha
|
7 |
metrics:
|
8 |
- precision
|
9 |
- recall
|
|
|
16 |
name: Token Classification
|
17 |
type: token-classification
|
18 |
dataset:
|
19 |
+
name: pasha
|
20 |
+
type: pasha
|
21 |
config: pasha
|
22 |
split: test
|
23 |
args: pasha
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.9845822875582646
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.989193083573487
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.9868823000898472
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9908389585342333
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
41 |
|
42 |
# pasha
|
43 |
|
44 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the pasha dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0558
|
47 |
+
- Precision: 0.9846
|
48 |
+
- Recall: 0.9892
|
49 |
+
- F1: 0.9869
|
50 |
+
- Accuracy: 0.9908
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
72 |
- seed: 42
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
+
- training_steps: 1000
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 2.13 | 100 | 0.2662 | 0.9524 | 0.9442 | 0.9483 | 0.9566 |
|
82 |
+
| No log | 4.26 | 200 | 0.1026 | 0.9771 | 0.9820 | 0.9795 | 0.9851 |
|
83 |
+
| No log | 6.38 | 300 | 0.0722 | 0.9821 | 0.9878 | 0.9849 | 0.9884 |
|
84 |
+
| No log | 8.51 | 400 | 0.0608 | 0.9852 | 0.9863 | 0.9858 | 0.9892 |
|
85 |
+
| 0.2962 | 10.64 | 500 | 0.0606 | 0.9849 | 0.9860 | 0.9854 | 0.9889 |
|
86 |
+
| 0.2962 | 12.77 | 600 | 0.0518 | 0.9860 | 0.9910 | 0.9885 | 0.9920 |
|
87 |
+
| 0.2962 | 14.89 | 700 | 0.0526 | 0.9864 | 0.9910 | 0.9887 | 0.9923 |
|
88 |
+
| 0.2962 | 17.02 | 800 | 0.0543 | 0.9849 | 0.9896 | 0.9872 | 0.9913 |
|
89 |
+
| 0.2962 | 19.15 | 900 | 0.0557 | 0.9846 | 0.9888 | 0.9867 | 0.9911 |
|
90 |
+
| 0.0255 | 21.28 | 1000 | 0.0558 | 0.9846 | 0.9892 | 0.9869 | 0.9908 |
|
91 |
|
92 |
|
93 |
### Framework versions
|