mijungkim commited on
Commit
7541f4e
1 Parent(s): 5bbfc02

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -15
README.md CHANGED
@@ -3,7 +3,7 @@ license: cc-by-nc-sa-4.0
3
  tags:
4
  - generated_from_trainer
5
  datasets:
6
- - nielsr/funsd-layoutlmv3
7
  metrics:
8
  - precision
9
  - recall
@@ -16,24 +16,24 @@ model-index:
16
  name: Token Classification
17
  type: token-classification
18
  dataset:
19
- name: nielsr/funsd-layoutlmv3
20
- type: nielsr/funsd-layoutlmv3
21
  config: pasha
22
  split: test
23
  args: pasha
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.879144385026738
28
  - name: Recall
29
  type: recall
30
- value: 0.888328530259366
31
  - name: F1
32
  type: f1
33
- value: 0.8837125963089052
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.909112825458052
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,13 +41,13 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  # pasha
43
 
44
- This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the nielsr/funsd-layoutlmv3 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.6462
47
- - Precision: 0.8791
48
- - Recall: 0.8883
49
- - F1: 0.8837
50
- - Accuracy: 0.9091
51
 
52
  ## Model description
53
 
@@ -72,13 +72,22 @@ The following hyperparameters were used during training:
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
75
- - training_steps: 100
76
 
77
  ### Training results
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | No log | 2.13 | 100 | 0.6462 | 0.8791 | 0.8883 | 0.8837 | 0.9091 |
 
 
 
 
 
 
 
 
 
82
 
83
 
84
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  datasets:
6
+ - pasha
7
  metrics:
8
  - precision
9
  - recall
 
16
  name: Token Classification
17
  type: token-classification
18
  dataset:
19
+ name: pasha
20
+ type: pasha
21
  config: pasha
22
  split: test
23
  args: pasha
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.9845822875582646
28
  - name: Recall
29
  type: recall
30
+ value: 0.989193083573487
31
  - name: F1
32
  type: f1
33
+ value: 0.9868823000898472
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9908389585342333
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
41
 
42
  # pasha
43
 
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the pasha dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.0558
47
+ - Precision: 0.9846
48
+ - Recall: 0.9892
49
+ - F1: 0.9869
50
+ - Accuracy: 0.9908
51
 
52
  ## Model description
53
 
 
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
75
+ - training_steps: 1000
76
 
77
  ### Training results
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 2.13 | 100 | 0.2662 | 0.9524 | 0.9442 | 0.9483 | 0.9566 |
82
+ | No log | 4.26 | 200 | 0.1026 | 0.9771 | 0.9820 | 0.9795 | 0.9851 |
83
+ | No log | 6.38 | 300 | 0.0722 | 0.9821 | 0.9878 | 0.9849 | 0.9884 |
84
+ | No log | 8.51 | 400 | 0.0608 | 0.9852 | 0.9863 | 0.9858 | 0.9892 |
85
+ | 0.2962 | 10.64 | 500 | 0.0606 | 0.9849 | 0.9860 | 0.9854 | 0.9889 |
86
+ | 0.2962 | 12.77 | 600 | 0.0518 | 0.9860 | 0.9910 | 0.9885 | 0.9920 |
87
+ | 0.2962 | 14.89 | 700 | 0.0526 | 0.9864 | 0.9910 | 0.9887 | 0.9923 |
88
+ | 0.2962 | 17.02 | 800 | 0.0543 | 0.9849 | 0.9896 | 0.9872 | 0.9913 |
89
+ | 0.2962 | 19.15 | 900 | 0.0557 | 0.9846 | 0.9888 | 0.9867 | 0.9911 |
90
+ | 0.0255 | 21.28 | 1000 | 0.0558 | 0.9846 | 0.9892 | 0.9869 | 0.9908 |
91
 
92
 
93
  ### Framework versions